已知a,b∈R,i為虛數(shù)單位,若a-i=2+bi,則(a+bi)2=
 
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:由復(fù)數(shù)相等的條件求得a,b的值,代入(a+bi)2后得答案.
解答: 解:由a-i=2+bi,得a=2,b=-1.
∴(a+bi)2=(2-i)2=3-4i.
故答案為:3-4i.
點(diǎn)評:本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)相等的條件,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

化簡:sin(α-
2
)cos(α-π)-sin(α-2π)cos(α-
π
2
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求導(dǎo)數(shù)f(x)=2-2sin2
x
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A,B,C的對邊分別是a,b,c,已知a2+b2=2012c2,求證
2sinAsinBcosC
sin2(A+B)
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在?ABCD中,AB=2,AD=1,∠DAB=60°,F(xiàn)為DC的中點(diǎn),E為線段BC上的一個點(diǎn),若
AE
AF
=
15
4
,則
AE
AB
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合U={1,2,3,4,5,6,7},M={2,4,7},則∁UM=( 。
A、U
B、{1,2,6}
C、{1,3,5,6}
D、{1,3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形么BDC內(nèi)接于圓,BD=CD,過C點(diǎn)的圓的切線與AB的延長線交于E點(diǎn).
(I)求證:∠EAC=2∠DCE;
(Ⅱ)若BD⊥AB,BC=BE,AE=2,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosx,sin
x
2
)
b
=(0,cos
x
2
)
,x∈R,若函數(shù)f(x)=2+sinx-|a-b|2,且函數(shù)g(x)的圖象與函數(shù)f(x)的圖象關(guān)于原點(diǎn)成中心對稱.
(Ⅰ)求函數(shù)g(x)的解析式;
(Ⅱ)若h(x)=g(x)-λf(x)+1在x∈[-
π
2
π
2
]上是增函數(shù),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-16x+q+3
(1)若函數(shù)在區(qū)間[-1,1]上存在零點(diǎn),求實(shí)數(shù)q的取值范圍;
(2)是否存在常數(shù)t(t≥0),當(dāng)t∈[t,10]時,f(x)的值域?yàn)閰^(qū)間D,且區(qū)間D的長度為12-t(視區(qū)間[a,b]的長度為b-a),若存在,求出所有滿足條件的t,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案