分析 (Ⅰ)銳角△ABC 中,由條件利用正弦定理求得 $\sqrt{7}$sinB=3sinA,再根據(jù)$\sqrt{7}$sinB+sinA=2$\sqrt{3}$,求得sinA的值,可得角A 的值.
(Ⅱ) 銳角△ABC 中,由條件利用余弦定理求得c的值,再根據(jù)△ABC的面積為$\frac{1}{2}$bc•sinA,計算求得結(jié)果.
解答 解:(Ⅰ)銳角△ABC 中,由條件利用正弦定理可得$\frac{\sqrt{7}}{sinA}$=$\frac{3}{sinB}$,∴$\sqrt{7}$sinB=3sinA,
再根據(jù)$\sqrt{7}$sinB+sinA=2$\sqrt{3}$,求得sinA=$\frac{\sqrt{3}}{2}$,∴角A=$\frac{π}{3}$.
(Ⅱ) 銳角△ABC 中,由條件利用余弦定理可得a2=7=c2+9-6c•cos$\frac{π}{3}$,解得c=1 或c=2.
當(dāng)c=1時,cosB=$\frac{{a}^{2}{+c}^{2}{-b}^{2}}{2ac}$=-$\frac{\sqrt{7}}{14}$<0,故B為鈍角,這與已知△ABC為銳角三角形相矛盾,故不滿足條件.
當(dāng)c=2時,△ABC 的面積為$\frac{1}{2}$bc•sinA=$\frac{1}{2}$•3•2•$\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{2}$.
點評 本題主要考查正弦定理和余弦定理的應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{21}{2}$ | B. | 21 | C. | 42 | D. | 84 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1,2} | B. | {0,1} | C. | {x|0<x<2} | D. | {x|-3<x<2} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com