【題目】設函數(shù)f(x)=ln x-ax(a∈R)(e=2.718 28…是自然對數(shù)的底數(shù)).
(1)判斷f(x)的單調性;
(2)當f(x)<0在(0,+∞)上恒成立時,求a的取值范圍;
(3)證明:當x∈(0,+∞)時, (1+x) <e.
【答案】見解析
【解析】(1)f′(x)=-a,函數(shù)f(x)=ln x-ax的定義域為(0,+∞),
當a≤0時,f′(x)>0,此時f(x)在(0,+∞)上是增函數(shù),
當a>0時,x∈時,f′(x)>0,此時f(x)在上是增函數(shù),x∈時,f′(x)<0,此時f(x)在上是減函數(shù).
綜上,當a≤0時,f(x)在(0,+∞)上是增函數(shù),當a>0時,f(x)在上是增函數(shù),在上是減函數(shù).
(2)f(x)<0在(0,+∞)上恒成立,即a>在(0,+∞)上恒成立,
設g(x)=,則g′(x)=,
當x∈(0,e)時,g′(x)>0,g(x)為增函數(shù),當x∈(e,+∞)時,g′(x)<0,g(x)為減函數(shù),
故當x=e時,g(x)取得最大值,
所以a的取值范圍是.
(3)證明:要證當x∈(0,+∞)時, (1+x) <e,設t=1+x,t∈(1,+∞),只要證t<et,兩邊取以e為底數(shù)的對數(shù),即ln t<t-1.
由(1)知當a=1時,f(x)=ln x-x的最大值為-1,此時x=1,所以當t∈(1,+∞)時,ln t-t<-1,
即得ln t<t-1,所以原不等式成立.
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的實軸端點分別為,記雙曲線的其中一個焦點為,一個虛軸端點為,若在線段上(不含端點)有且僅有兩個不同的點,使得,則雙曲線的離心率的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知復數(shù),是實數(shù),是虛數(shù)單位.
(1)求復數(shù);
(2)若復數(shù)所表示的點在第一象限,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),若存在,使成立,則稱為函數(shù)的不動點,已知.
(1)若有兩個不動點為,求函數(shù)的零點;
(2)若時,函數(shù)沒有不動點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2016年夏季奧運會將在巴西里約熱內盧舉行,體育頻道為了解某地區(qū)關于
奧運會直播的收視情況,隨機抽取了名觀眾進行調查,其中歲以上的觀眾有名,下面是根據(jù)
調查結果繪制的觀眾準備平均每天收看奧運會直播時間的頻率分布表(時間:分鐘):
分組 | ||||||
頻率 |
將每天準備收看奧運會直播的時間不低于分鐘的觀眾稱為“奧運迷”,已知“奧運迷”中有名歲
以上的觀眾.
(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有以上的把握認為“奧運迷”與年齡
有關?
非“奧運迷” | “奧運迷” | 合計 | |
歲以下 | |||
歲以上 | |||
合計 |
(2)將每天準備收看奧運會直播不低于分鐘的觀眾稱為“超級奧運迷”,已知“超級奧運迷”中有
名歲以上的觀眾,若從“超級奧運迷”中任意選取人,求至少有名歲以上的觀眾的概率.
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(λx+1)ln x-x+1.
(1)若λ=0,求f(x)的最大值;
(2)若曲線y=f(x)在點(1,f(1))處的切線與直線x+y+1=0垂直,證明:>0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知和是函數(shù)的兩個零點,
(1)求實數(shù)的值;
(2)設
①若不等式在上恒成立,求實數(shù)的取值范圍;
②若有三個不同的實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某出租車公司為了解本公司出租車司機對新法規(guī)的知曉情況,隨機對100名出租車司機進行調查,調查問卷共10道題,答題情況如下表所示.
(1)如果出租車司機答對題目數(shù)大于等于9,就認為該司機對新法規(guī)的知曉情況比較好,試估計該公司的出租車司機對新法規(guī)知曉情況比較好的概率;
(2)從答對題目數(shù)小于8的出租車司機中任選出2人做進一步的調查,求選出的2人中至少有一名女出租車司機的概率.
答對題目數(shù) | [0,8) | 8 | 9 | 10 |
女 | 2 | 13 | 12 | 8 |
男 | 3 | 37 | 16 | 9 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com