【題目】2016年夏季奧運(yùn)會(huì)將在巴西里約熱內(nèi)盧舉行,體育頻道為了解某地區(qū)關(guān)于

奧運(yùn)會(huì)直播的收視情況,隨機(jī)抽取了名觀眾進(jìn)行調(diào)查,其中歲以上的觀眾有名,下面是根據(jù)

調(diào)查結(jié)果繪制的觀眾準(zhǔn)備平均每天收看奧運(yùn)會(huì)直播時(shí)間的頻率分布表(時(shí)間:分鐘)

分組







頻率







將每天準(zhǔn)備收看奧運(yùn)會(huì)直播的時(shí)間不低于分鐘的觀眾稱為奧運(yùn)迷,已知奧運(yùn)迷中有

以上的觀眾.

1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有以上的把握認(rèn)為奧運(yùn)迷與年齡

有關(guān)?


奧運(yùn)迷

奧運(yùn)迷

合計(jì)

歲以下




歲以上




合計(jì)




2)將每天準(zhǔn)備收看奧運(yùn)會(huì)直播不低于分鐘的觀眾稱為超級(jí)奧運(yùn)迷,已知超級(jí)奧運(yùn)迷中有

歲以上的觀眾,若從超級(jí)奧運(yùn)迷中任意選取人,求至少有歲以上的觀眾的概率.

附:







【答案】(1)列聯(lián)表見解析,沒有以上的把握認(rèn)為奧運(yùn)迷與年齡有關(guān);(2.

【解析】試題分析:(1)根據(jù)已知條件,填寫聯(lián)表,然后根據(jù)公式計(jì)算得,所以沒有以上的把握認(rèn)為奧運(yùn)迷與年齡有關(guān);(2)由頻率分布表可知,超級(jí)奧運(yùn)迷人,用列舉法列舉出所有的可能性有種,其中符合題意的有種,故概率為.

試題解析:

1)由頻率分布表可知,在軸取的人中,奧運(yùn)迷人,從完成列聯(lián)表如下:


奧運(yùn)迷

奧運(yùn)迷

合計(jì)

歲以下




歲以上




合計(jì)




.

因?yàn)?/span>,所以沒有以上的把握認(rèn)為奧運(yùn)迷與年齡有關(guān).

2)由頻率分布表可知,超級(jí)奧運(yùn)迷人,從而所有可能結(jié)果所組成的基本事件空間為:

其中表示男性, 表示女性, . 個(gè)基本事件組成,且是等可能的,用表示事件任意選人,至少有歲以上觀眾,則,即事件包含個(gè)基本事件,所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)上的最大值;

(2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;

(3)當(dāng)時(shí),函數(shù)的圖象與軸交于兩點(diǎn),又的導(dǎo)函數(shù).若正常數(shù)滿足條件.證明:<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正三棱柱ABCA1B1C1中,FF1分別是AC,A1C1的中點(diǎn).

求證:(1)平面AB1F1∥平面C1BF

(2)平面AB1F1⊥平面ACC1A1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某投資人欲將5百萬元獎(jiǎng)金投入甲、乙兩種理財(cái)產(chǎn)品,根據(jù)銀行預(yù)測,甲、乙兩種理財(cái)產(chǎn)品的收益與投入獎(jiǎng)金的關(guān)系式分別為,其中為常數(shù)且.設(shè)對(duì)乙種產(chǎn)品投入獎(jiǎng)金百萬元,其中

1)當(dāng)時(shí),如何進(jìn)行投資才能使得總收益最大;(總收益

2)銀行為了吸儲(chǔ),考慮到投資人的收益,無論投資人獎(jiǎng)金如何分配,要使得總收益不低于,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某少數(shù)民族的刺繡有著悠久的歷史,下圖為她們刺繡最簡單的四個(gè)圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含個(gè)小正方形.

(1)求出;

(2)利用合情推理的“歸納推理思想”歸納出的關(guān)系式,

(3)根據(jù)你得到的關(guān)系式求的表達(dá)式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ln x-ax(a∈R)(e=2.718 28…是自然對(duì)數(shù)的底數(shù)).

(1)判斷f(x)的單調(diào)性;

(2)當(dāng)f(x)<0在(0,+∞)上恒成立時(shí),求a的取值范圍;

(3)證明:當(dāng)x∈(0,+∞)時(shí), (1+x) <e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)1.1x,g(x)ln x1,h(x)x的圖象如圖所示,試分別指出各曲線對(duì)應(yīng)的函數(shù),并比較三個(gè)函數(shù)的增長差異(1,a,b,c,d,e為分界點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x-+a(2-ln x)(a>0),求函數(shù)f(x)的單調(diào)區(qū)間與極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐的直觀圖和三視圖如下:

(1)求證: 底面;

(2)求三棱錐的體積;

(3)求三棱錐的側(cè)面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案