已知等比數(shù)列{an}的公比為q,且a1>0,則“q>0”是“數(shù)列{an}為遞增數(shù)列”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡(jiǎn)易邏輯
分析:分充分性和必要性考慮,注意q的范圍q>0且q≠1.
解答: 解:等比數(shù)列{an}的公比為q,且a1>0,為大前提,且q>0,且q≠1,
充分性:“q>0”時(shí),例如0<q<1,推不出“數(shù)列{an}為遞增數(shù)列”,充分性不成立;
必要性:“數(shù)列{an}為遞增數(shù)列”,則q>1,可推出“q>0”,必要性成立;
綜上,“q>0”是“數(shù)列{an}為遞增數(shù)列”的必要不充分條件,
故選:B.
點(diǎn)評(píng):本題考查充要條件,綜合等比數(shù)列的相關(guān)知識(shí)求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中的a1,a4027是函數(shù)f(x)=x3-2x2-x+1的兩個(gè)極值點(diǎn),則函數(shù)y=sin(a2014x+
π
6
)是周期為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線my2-x2=1的一個(gè)頂點(diǎn)在拋物線y=
1
2
x2的準(zhǔn)線上,則該雙曲線的離心率為(  )
A、
5
B、2
5
C、2
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x|+
m
x
-1(x≠0).
(1)若對(duì)任意x∈R,不等式f(2x)>0恒成立,求m的取值范圍;
(2)討論函數(shù)f(x)零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩艘輪船都要?吭谕粋(gè)泊位,它們可能在一晝夜內(nèi)任意時(shí)刻到達(dá),甲、乙兩船停靠泊位的時(shí)間分別為2小時(shí)與4小時(shí),求一艘船停靠泊位時(shí)必須等待一段時(shí)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從甲、乙兩班某項(xiàng)測(cè)試成績(jī)中各隨機(jī)抽取5名同學(xué)的成績(jī),得到如下莖葉圖.已知甲班樣本成績(jī)的中位數(shù)為13,乙班樣本成績(jī)的平均數(shù)為16.
(Ⅰ) 求x,y的值;
(Ⅲ) 試估計(jì)甲、乙兩班在該項(xiàng)測(cè)試中整體水平的高低(只需寫出結(jié)論);
(Ⅲ) 從兩組樣本成績(jī)中分別去掉一個(gè)最低分和一個(gè)最高分,再?gòu)膬山M
剩余成績(jī)中分別隨機(jī)選取一個(gè)成績(jī),求這兩個(gè)成績(jī)的和ξ的分布列及數(shù)學(xué)期望.
(注:方差s2=
1
n
[(x1-
.
x
2+(x2-
.
x
2+…+(xn-
.
x
2],其中
.
x
為x1,x2,…,xn的平均數(shù).)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=kx+lnx(k是常數(shù)).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)k=0時(shí),是否存在不相等的正數(shù)a,b滿足
f(a)-f(b)
a-b
=f′(
a+b
2
)?
若存在,求出a,b;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若底邊長(zhǎng)為2的正四棱錐內(nèi)切一半徑為
1
2
的球,則此正四棱錐的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式1<丨2x-1丨<3,并用區(qū)間表示解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案