【題目】已知數(shù)列的前n項和為,且.
(1) 證明數(shù)列是等比數(shù)列,并求出數(shù)列的通項公式;
(2) 記,求數(shù)列的前n項和.
【答案】(1) 證明見解析,; (2).
【解析】
(1)運用數(shù)列的遞推式:n=1時,a1=S1,當n≥2時,an=Sn﹣Sn﹣1,計算可得an=2an﹣1+1,即an+1=2(an﹣1+1),
由等比數(shù)列的定義和通項公式可得所求;
(2),運用錯位相減法求和即可
(1)證明:(n∈N*),
可得n=1時,a1=S1+1=2a1,
即a1=1,
當n≥2時,an=Sn﹣Sn﹣1,
Sn+n=2an,Sn﹣1+n﹣1=2an﹣1,
相減可得an+1=2an﹣2an﹣1,
可得an=2an﹣1+1,即an+1=2(an﹣1+1),
則數(shù)列{an+1}為首項為2,公比為2的等比數(shù)列,
可得an+1=2n,即an=2n﹣1;
(2)
前n項和為Tn=①
2Tn=②
① ②相減可得﹣Tn=2+2(22+…+2n)﹣=
化簡可得
科目:高中數(shù)學 來源: 題型:
【題目】橢圓的離心率為,其左焦點到點的距離為,不過原點O的直線與C交于A,B兩點,且線段AB被直線OP平分.
(1)求橢圓C的方程;
(2)求k的值;
(3)求面積取最大值時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心在坐標原點,焦點在軸上,離心率為,橢圓上的點到焦點距離的最大值為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若過點的直線與橢圓交于不同的兩點,且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,,,數(shù)列中,,滿足.
(1) 求出,的通項公式;
(2)設(shè),數(shù)列的前項和為,求使得時,對所有的恒成立的最大正整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:過點,左右焦點為,且橢圓C關(guān)于直線對稱的圖形過坐標原點。
(I)求橢圓C方程;
(II)圓D:與橢圓C交于A,B兩點,R為線段AB上任一點,直線F1R交橢圓C于P,Q兩點,若AB為圓D的直徑,且直線F1R的斜率大于1,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校舉行“慶元旦”教工羽毛球單循環(huán)比賽(任意兩個參賽隊伍只比賽一場),有高一、高二、高三共三個隊參賽,高一勝高二的概率為,高一勝高三的概率為,高二勝高三的概率為,每場勝負相互獨立,勝者記1分,負者記0分,規(guī)定:積分相同時,高年級獲勝.
(1)若高三獲得冠軍的概率為,求;
(2)記高三的得分為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠擬建一座平面圖(如右圖所示)為矩形且面積為200平方米的三級污水處理池,由于地形限制,長、寬都不能超過16米,如果池外周壁建造單價為每米400元,中間兩條隔墻建造單價為每米248元,池底建造單價為每平方米80元(池壁厚度忽略不計,且池無蓋).
(1)寫出總造價y(元)與污水處理池長x(米)的函數(shù)關(guān)系式,并指出其定義域;
(2)求污水處理池的長和寬各為多少時,污水處理池的總造價最低?并求最低總造價.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com