【題目】如圖所示,已知AB為圓O的直徑,且,點(diǎn)D為線(xiàn)段AO的中點(diǎn),點(diǎn)C為圓O上的一點(diǎn),且,平面ABC,.
(1)求證:平面PAB.
(2)求二面角的余弦值.
【答案】(1)證明見(jiàn)解析;(2)
【解析】
(1)連接,可證,再由線(xiàn)面垂直得到,從而得證;
(2)以為坐標(biāo)原點(diǎn),,,分別為軸,軸,軸建立空間直角坐標(biāo)系利用空間向量法求出二面角的余弦值.
(1)證明:連接,因?yàn)?/span>為圓的直徑,
,且,又因?yàn)?/span>,
, 為等邊三角形.
又為的中點(diǎn),.
因?yàn)?/span>平面ABC,又平面ABC,,
由平面PAB,平面PAB,且,
所以平面PAB
(2)由(1)知,,互相垂直,以為坐標(biāo)原點(diǎn),
,,分別為軸,軸,軸建立如圖坐標(biāo)系,
,,,,
,,設(shè)為平面PAC的法向量,則,即,令,解得,
又因?yàn)?/span>平面,
平面的法向量可取,
,
二面角的余弦值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】依照某發(fā)展中國(guó)家2018年的官方資料,將該國(guó)所有家庭按年收入從低到高的順序平均分為五組,依次為第一組至第五組,各組家庭的年收入總和占該國(guó)全部家庭的年收入總和的百分比如圖所示.
以下關(guān)于該國(guó)2018年家庭收入的判斷,一定正確的是( )
A. 至少有的家庭的年收入都低于全部家庭的平均年收入
B. 收入最低的那的家庭平均年收入為全部家庭平均年收入的
C. 收入最高的那的家庭年收入總和超過(guò)全部家庭年收入總和的
D. 收入最低的那的家庭年收入總和超過(guò)全部家庭年收入總和的
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列是各項(xiàng)均為正數(shù)的等差數(shù)列,其中,且成等比數(shù)列;數(shù)列的前項(xiàng)和為,滿(mǎn)足.
(1)求數(shù)列、的通項(xiàng)公式;
(2)如果,設(shè)數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得成立,若存在,求出的最小值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若,,求實(shí)數(shù)的值.
(2)若,,求正實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是函數(shù)的極值點(diǎn).
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)求證:函數(shù)存在唯一的極小值點(diǎn),且.
(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某車(chē)間有5名工人其中初級(jí)工2人,中級(jí)工2人,高級(jí)工1人現(xiàn)從這5名工人中隨機(jī)抽取2名.
Ⅰ求被抽取的2名工人都是初級(jí)工的概率;
Ⅱ求被抽取的2名工人中沒(méi)有中級(jí)工的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn):(),焦點(diǎn)為,直線(xiàn)交拋物線(xiàn)于,兩點(diǎn),為的中點(diǎn),且.
(1)求拋物線(xiàn)的方程;
(2)若,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí),.則下列結(jié)論正確的是( ).
A.當(dāng)時(shí),
B.函數(shù)有五個(gè)零點(diǎn)
C.若關(guān)于的方程有解,則實(shí)數(shù)的取值范圍是
D.對(duì),恒成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某社區(qū)為了解居民參加體育鍛煉情況,隨機(jī)抽取18名男性居民,12名女性居民對(duì)他們參加體育鍛煉的情況進(jìn)行問(wèn)卷調(diào)查.現(xiàn)按參加體育鍛煉的情況將居民分成3類(lèi):甲類(lèi)(不參加體育鍛煉),乙類(lèi)(參加體育鍛煉,但平均每周參加體育鍛煉的時(shí)間不超過(guò)5個(gè)小時(shí)),丙類(lèi)(參加體育鍛煉,且平均每周參加體育鍛煉的時(shí)間超過(guò)5個(gè)小時(shí)),調(diào)查結(jié)果如下表:
(1)根據(jù)表中的統(tǒng)計(jì)數(shù)據(jù),完成下面列聯(lián)表,并判斷是否有的把握認(rèn)為參加體育鍛煉與性別有關(guān)?
(2)從抽出的女性居民中再隨機(jī)抽取3人進(jìn)一步了解情況,記為抽取的這3名女性居民中甲類(lèi)和丙類(lèi)人數(shù)差的絕對(duì)值,求的數(shù)學(xué)期望.
附:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com