【題目】已知數(shù)列{an}滿(mǎn)足a0∈R,an+1=2n﹣3an , (n=0,1,2,…)
(1)設(shè)bn= ,試用a0 , n表示bn(即求數(shù)列{bn}的通項(xiàng)公式);
(2)求使得數(shù)列{an}遞增的所有a0的值.

【答案】
(1)解:∵an+1=2n﹣3an,

,

,變形得, ,

,因而, ;


(2)由(1)知 ,從而 ,

,

設(shè) ,

,下面說(shuō)明 ,討論:

,則A<0,此時(shí)對(duì)充分大的偶數(shù)n, ,有an<an﹣1,這與{an}遞增的要求不符;

,則A>0,此時(shí)對(duì)充分大的奇數(shù)n, ,有an<an﹣1,這與{an}遞增的要求不符;

,則A=0, ,始終有an>an﹣1.綜上,


【解析】(1)將遞推公式兩邊同除以,可得出,由待定系數(shù)法推出為等比數(shù)列,進(jìn)而得出通項(xiàng)公式;(2)由的通項(xiàng)公式得出的通項(xiàng)公式,表示出,分情況討論其差值的大小即可得出滿(mǎn)足遞增條件的的值。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ln(1+x)﹣ax,
(Ⅰ)當(dāng)b=1時(shí),求g(x)的最大值;
(Ⅱ)若對(duì)x∈[0,+∞),f(x)≤0恒成立,求a的取值范圍;
(Ⅲ)證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系xOy中,橢圓C: 的離心率是 ,
拋物線(xiàn)E:x2=4y的焦點(diǎn)F是C的一個(gè)頂點(diǎn).

(1)求橢圓C的方程;
(2)設(shè)與坐標(biāo)軸不重合的動(dòng)直線(xiàn)l與C交于不同的兩點(diǎn)A和B,與x軸交于點(diǎn)M,且 滿(mǎn)足kPA+kPB=2kPM , 試判斷點(diǎn)M是否為定點(diǎn)?若是定點(diǎn)求出點(diǎn)M的坐標(biāo);若不是定點(diǎn)請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且 ,AD=CD=1.

(1)求證:BD⊥AA1;
(2)若E為棱BC的中點(diǎn),求證:AE∥平面DCC1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)為研究函數(shù) 的性質(zhì),構(gòu)造了如圖所示的兩個(gè)邊長(zhǎng)為1的正方形ABCD和BEFC,點(diǎn)P是邊BC上的一個(gè)動(dòng)點(diǎn),設(shè)CP=x,則AP+PF=f(x).請(qǐng)你參考這些信息,推知函數(shù)f(x)的值域是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】運(yùn)行如圖所示的流程圖,則輸出的結(jié)果S是( 。

A.
B.
C.﹣1
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知m>1,直線(xiàn)l:x﹣my﹣ =0,橢圓C: +y2=1,F(xiàn)1、F2分別為橢圓C的左、右焦點(diǎn).
(Ⅰ)當(dāng)直線(xiàn)l過(guò)右焦點(diǎn)F2時(shí),求直線(xiàn)l的方程;
(Ⅱ)設(shè)直線(xiàn)l與橢圓C交于A、B兩點(diǎn),△AF1F2 , △BF1F2的重心分別為G、H.若原點(diǎn)O在以線(xiàn)段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱柱ABC﹣A1B1C1中,AB=BC=CA=AA1=2,側(cè)棱AA1⊥平面ABC,且D,E分別是棱A1B1 , A1A1的中點(diǎn),點(diǎn)F在棱AB上,且AF= AB.

(1)求證:EF∥平面BDC1;
(2)求三棱錐D﹣BEC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)求f(x)在(1,0)處的切線(xiàn)方程;
(2)求證: ;
(3)若lng(x)≤ax2對(duì)任意x∈R恒成立,求實(shí)數(shù)a的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案