解:(I)證明:連接OF,則,,,
所以O(shè)B2=OF2+FB2,即OF⊥FB.
又因?yàn)镋O⊥FB,所以FB⊥平面EOF,得EF⊥FB.
方法一
(Ⅱ)∵平面EAD⊥平面ABCD,過點(diǎn)E向AD引垂線交AD于點(diǎn)O,連接OB,OF,延長DF到點(diǎn)C,使CD=AB,
則,,,
所以O(shè)B2=OF2+FB2,即∠EFO為二面角A-BF-E的平面角,
在Rt△EOF中,EO=OF,所以.
方法二:(II )取AD的中點(diǎn)O,連接OE,則EO⊥AD,EO⊥平面ABCDD,建立如圖所示的直角坐標(biāo)系,設(shè)AD=a,
則,則,
則,
所以,,
可求得平面EFB的法向量為,
平面ABCD的一個(gè)法向量為,
則二面角A-BF-E的大小為θ,,即二面角為.
(Ⅲ)設(shè),(0≤t≤1)則==,同理,
=,
由=0,解得t=或,
所以BP=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州市高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年內(nèi)蒙古赤峰市高三統(tǒng)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com