分析 (I)在Rt△ADE中,AE=$\sqrt{A{D}^{2}-D{E}^{2}}$,可得S△ADE=$\frac{1}{2}AE•DE$.由于CD⊥平面ADE,可得VC-ADE=$\frac{1}{3}CD•{S}_{△ADE}$.
(II)由CD⊥平面ADE,可得CD⊥AE,進(jìn)而得到AE⊥平面CDE,即可證明平面ACE⊥平面CDE;
(III)在線段DE上存在一點(diǎn)F,使AF∥平面BCE,$\frac{EF}{ED}$=$\frac{1}{3}$.設(shè)F為線段DE上的一點(diǎn),且$\frac{EF}{ED}$=$\frac{1}{3}$.過(guò)F作FM∥CD交CE于點(diǎn)M,由線面垂直的性質(zhì)可得:CD∥AB.可得四邊形ABMF是平行四邊形,于是AF∥BM,即可證明AF∥平面BCE.
解答 (I)解:在Rt△ADE中,AE=$\sqrt{A{D}^{2}-D{E}^{2}}$=3$\sqrt{3}$,
∴S△ADE=$\frac{1}{2}AE•DE$=$\frac{1}{2}×3\sqrt{3}×3$=$\frac{9\sqrt{3}}{2}$.∵CD⊥平面ADE,∴VC-ADE=$\frac{1}{3}CD•{S}_{△ADE}$=$\frac{1}{3}×6×\frac{9\sqrt{3}}{2}$=9$\sqrt{3}$.
(II)證明:∵CD⊥平面ADE,∴CD⊥AE,又AE⊥ED,ED∩CD=D,∴AE⊥平面CDE,又AE?平面ACE,∴平面ACE⊥平面CDE;
(III)解:在線段DE上存在一點(diǎn)F,使AF∥平面BCE,$\frac{EF}{ED}$=$\frac{1}{3}$.
下面給出證明:設(shè)F為線段DE上的一點(diǎn),且$\frac{EF}{ED}$=$\frac{1}{3}$.
過(guò)F作FM∥CD交CE于點(diǎn)M,則FM=$\frac{1}{3}CD$,
∵CD⊥平面ADE,AB⊥平面ADE,
∴CD∥AB.又CD=3AB,
∴$MF\underset{∥}{=}AB$,
∴四邊形ABMF是平行四邊形,
∴AF∥BM,又AF?平面BCE,BM?平面BCE.
∴AF∥平面BCE.
點(diǎn)評(píng) 本題考查了線面面面垂直與平行的判定與性質(zhì)定理、三棱錐的體積計(jì)算公式、平行線分線段成比例定理,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分條件 | B. | 必要條件 | ||
C. | 充要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2014 | B. | 2015 | C. | 2016 | D. | 2017 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | -4 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com