【題目】如圖,在長方體中,,,,M為AB的中點,點P在線段上,點P到直線的距離的最小值為________.
【答案】
【解析】
連接MC,運用線面平行的判定定理可得BB'∥平面MCC',點P到直線BB'的距離的最小值轉化為異面直線BB'和直線MC'的距離,即為直線BB'和平面MCC'的距離,即為B到平面MCC'的距離,過B在底面AC內作BH⊥MC,證得BH⊥平面MCC',求得BH的長即為所求.
解:連接MC,由BB'∥CC',BB'平面MCC',CC'平面MCC',
可得BB'∥平面MCC',
由點P到直線BB'的距離的最小值為異面直線BB'和直線C'M的距離,
即有直線BB'和平面MCC'的距離即為異面直線BB'和MC'的距離,
也即B到平面MCC'的距離,
過B在底面AC內作BH⊥MC,
由CC'⊥底面AC,可得CC'⊥BH,
即有BH⊥平面MCC',
由BC=BM=1,且BC⊥BA,可得BH=.
故答案為:.
科目:高中數(shù)學 來源: 題型:
【題目】為了解某校學生參加社區(qū)服務的情況,采用按性別分層抽樣的方法進行調查.已知該校共有學生960人,其中男生560人,從全校學生中抽取了容量為的樣本,得到一周參加社區(qū)服務的時間的統(tǒng)計數(shù)據(jù)好下表:
超過1小時 | 不超過1小時 | |
男 | 20 | 8 |
女 | 12 | m |
(Ⅰ)求,;
(Ⅱ)能否有95%的把握認為該校學生一周參加社區(qū)服務時間是否超過1小時與性別有關?
(Ⅲ)以樣本中學生參加社區(qū)服務時間超過1小時的頻率作為該事件發(fā)生的概率,現(xiàn)從該校學生中隨機調查6名學生,試估計6名學生中一周參加社區(qū)服務時間超過1小時的人數(shù).
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量, ,設函數(shù),且的圖象過點和點.
(Ⅰ)求的值;
(Ⅱ)將的圖象向左平移()個單位后得到函數(shù)的圖象.若的圖象上各最高點到點的距離的最小值為1,求的單調增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地舉辦科技博覽會,有個場館,現(xiàn)將個志愿者名額分配給這個場館,要求每個場館至少有一個名額且各場館名額互不相同的分配方法共有( )種
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(題文)從某校高一年級隨機抽取名學生,獲得了他們日平均睡眠時間(單位:小時)的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表:
組號 | 分組 | 頻數(shù) | 頻率 |
(Ⅰ)求的值.
(Ⅱ)若,補全表中數(shù)據(jù),并繪制頻率分布直方圖.
(Ⅲ)假設同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,若上述數(shù)據(jù)的平均值為,求,的值,并由此估計該校高一學生的日平均睡眠時間不少于小時的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)在區(qū)間上的最大值是最小值是則
A. 與有關,且與有關 B. 與有關,但與無關
C. 與無關,且與無關 D. 與無關,但與有關
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在矩形中, , 為的中點, 為的中點.將沿折起到,使得平面平面(如圖).
圖1 圖2
(Ⅰ)求證: ;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)在線段上是否存在點,使得平面?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】判斷下列命題的真假:
(1)是的必要條件;
(2)是的充要條件;
(3)兩個三角形的兩組對應角相等是這兩個三角形相似的充要條件;
(4)三角形的三條邊滿足勾股定理是這個三角形為直角三角形的充要條件;
(5)在中,重心和垂心重合是為等邊三角形的必要條件;
(6)如果點到點的距離相等,則點一定在線段的垂直平分線上.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com