分析 (1)根據(jù)頻率和為1,求出成績(jī)?cè)赱120,130)的頻率,再計(jì)算這組數(shù)據(jù)的平均數(shù);
(2)根據(jù)正態(tài)分布的特征,計(jì)算50人中成績(jī)?cè)?35以上(包括135分)的有50×0.08=4人,而在[125,145)的學(xué)生有50×(0.12+0.08)=10,得出X的可能取值,計(jì)算對(duì)應(yīng)的概率,列出X的分布列,計(jì)算期望值.
解答 解:(1)由頻率分布直方圖可知[120,130)的頻率為1-(0.01×10+0.024×10+0.03×10+0.016×10+0.008×10)=0.12
所以估計(jì)該校全體學(xué)生的數(shù)學(xué)平均成績(jī)約為90×0.1+100×0.24+110×0.3+120×0.16+130×0.12+140×0.08=112
(2)由于$\frac{13}{10000}=0.0013$根據(jù)正態(tài)分布:P(120-3×5<X<120+3×5)=0.9974
故$P(X≥135)=\frac{1-0.9974}{2}=0.0013,即0.0013×10000=13$
所以前13名的成績(jī)?nèi)吭?35分以上
根據(jù)頻率分布直方圖可知這50人中成績(jī)?cè)?35以上(包括135分)的有50×0.08=4人,而在[125,145)的學(xué)生有50×(0.12+0.08)=10
所以X的取值為0,1,2,3.
所以P(X=0)=$\frac{{C}_{6}^{3}}{{C}_{10}^{3}}$=$\frac{1}{6}$,
P(X=1)=$\frac{{C}_{6}^{2}{C}_{4}^{1}}{{C}_{10}^{3}}$=$\frac{1}{2}$,
P(X=2)=$\frac{{C}_{6}^{1}{C}_{4}^{2}}{{C}_{10}^{3}}$=$\frac{3}{10}$,
P(X=3)=$\frac{{C}_{4}^{3}}{{C}_{10}^{3}}$=$\frac{1}{30}$;
所以X的分布列為
X | 0 | 1 | 2 | 3 |
P | $\frac{1}{6}$ | $\frac{1}{2}$ | $\frac{3}{10}$ | $\frac{1}{30}$ |
點(diǎn)評(píng) 本題考查了頻率分布直方圖的應(yīng)用問(wèn)題,也考查了正態(tài)分布的應(yīng)用問(wèn)題,考查了離散型隨機(jī)變量的分布列與期望的計(jì)算問(wèn)題,是綜合性題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com