(09年豐臺(tái)區(qū)期末)若函數(shù)y = f ( x ) ( x∈R )滿(mǎn)足f ( x + 2 ) = f ( x ),且x∈[ 1,1]時(shí),f ( x ) = | x |,函數(shù)y = g ( x )是偶函數(shù),且x∈( 0 , +∞)時(shí),g ( x ) = | log3x |。則函數(shù)y = f ( x )圖像與函數(shù)y = g ( x )圖像的交點(diǎn)個(gè)數(shù)為_(kāi)_______________
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年豐臺(tái)區(qū)期末文)(13分)

       已知數(shù)列{an n }是等比數(shù)列,且滿(mǎn)足a1 = 2 , an+1 = 3an 2n + 1 , nN*。

       (Ⅰ)求數(shù)列{an}的通項(xiàng)公式an

(Ⅱ)求數(shù)列{an}的前n項(xiàng)和Sn。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年豐臺(tái)區(qū)期末文)(14分)

       已知甲盒內(nèi)有大小相同的3個(gè)紅球和4個(gè)黑球,乙盒內(nèi)有大小相同的5個(gè)紅球和4個(gè)黑球,現(xiàn)從甲、乙兩個(gè)盒內(nèi)各任取2個(gè)球。

       (Ⅰ)求取出的4個(gè)球均為黑球的概率;

(Ⅱ)求取出的4個(gè)球中恰有一個(gè)紅球的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年豐臺(tái)區(qū)期末理)(14分)

    設(shè)橢圓M(ab>0)的離心率為,長(zhǎng)軸長(zhǎng)為,設(shè)過(guò)右焦點(diǎn)F

斜角為的直線(xiàn)交橢圓MAB兩點(diǎn)。

       (Ⅰ)求橢圓M的方程;

(Ⅱ)求證| AB | =;

(Ⅲ)設(shè)過(guò)右焦點(diǎn)F且與直線(xiàn)AB垂直的直線(xiàn)交橢圓MC,D,求|AB| + |CD|的最小

值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年豐臺(tái)區(qū)期末理)(13分)

       某中學(xué)在高一開(kāi)設(shè)了數(shù)學(xué)史等4門(mén)不同的選修課,每個(gè)學(xué)生必須選修,有只能從中選一

門(mén)。該校高一的3名學(xué)生甲、乙、丙對(duì)這4門(mén)不同的選修課的興趣相同。

       (Ⅰ)求3個(gè)學(xué)生選擇了3門(mén)不同的選修課的概率;

(Ⅱ)求恰有2門(mén)選修課這3個(gè)學(xué)生都沒(méi)有選擇的概率;

(Ⅲ)設(shè)隨機(jī)變量為甲、乙、丙這三個(gè)學(xué)生選修數(shù)學(xué)史這門(mén)課的人數(shù),求的分布列與數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年豐臺(tái)區(qū)期末理)(14分)

       在數(shù)列{an}中, a1 = 2 , an+1 = 3an 2n +1 。

       (Ⅰ)證明:數(shù)列{an n }是等比數(shù)列;

(Ⅱ)求數(shù)列{an}的通項(xiàng)公式an

    (Ⅲ)求數(shù)列{an}的前n項(xiàng)和Sn 。

查看答案和解析>>

同步練習(xí)冊(cè)答案