不等式x2-y2≤0表示的平面區(qū)域是(  )
A.B.C.D.
∵x2-y2≤0,
x-y≤0
x+y≥0
x-y≥0
x+y≤0

其區(qū)域是一個(gè)上下對(duì)角的角形區(qū)域,如圖A.
故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

當(dāng)點(diǎn)M(x,y)在如圖所示的三角形ABC內(nèi)(含邊界)運(yùn)動(dòng)時(shí),目標(biāo)函數(shù)z=kx+y取得最大值的一個(gè)最優(yōu)解為(1,2),則實(shí)數(shù)k的取值范圍是(  )
A.(-∞,-1]∪[1,+∞)B.[-1,1]C.(-∞,-1)∪(1,+∞)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

人們生活水平的提高,越來越注重科學(xué)飲食.營養(yǎng)學(xué)家指出,成人良好的日常飲食應(yīng)該至少提供0.075kg的碳水化合物,0.06kg的蛋白質(zhì),0.06kg的脂肪.1kg食物A含有0.105kg碳水化合物,0.07kg蛋白質(zhì),0.14kg脂肪,花費(fèi)28元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白質(zhì),0.07kg脂肪,花費(fèi)21元.為了滿足營養(yǎng)專家指出的日常飲食要求,同時(shí)使花費(fèi)最低,每天需要同時(shí)食用食物A和食物B多少kg?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)x,y∈R且滿足
x≥1
x+y-6≤0
y≥x
,則z=x+2y的最小值等于______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

實(shí)數(shù)x、y滿足不等式組
x≥1
y≥0
x-y≥0
,則W=
y-1
x
的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知D是由不等式組
x+2y≥0
2x-y≥0
所確定的平面區(qū)域,則圓x2+y2=4在區(qū)域D內(nèi)的弧長為( 。
A.
π
4
B.
π
2
C.πD.2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

給出平面區(qū)域?yàn)閳D中四邊形ABOC內(nèi)部及其邊界,目標(biāo)函數(shù)為z=ax-y,當(dāng)x=1,y=1時(shí),目標(biāo)函數(shù)z取最小值,則實(shí)數(shù)a的取值范圍是( 。
A.a(chǎn)<-1B.a(chǎn)>-
1
2
C.-1<a<-
1
2
D.-1≤a≤-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知實(shí)數(shù)x,y滿足
x+y≥1
x-y≤1
0≤y≤2
則z=2x-y
的最大值是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若實(shí)數(shù)x,y滿足
x≥1
x-3y≤-4
3x+5y≤30
,則z=
y+5
x+5
的最小值為( 。
A.-
17
5
B.
11
3
C.
26
15
D.
4
5

查看答案和解析>>

同步練習(xí)冊(cè)答案