【題目】定義在R上的偶函數(shù)f(x)滿足f(x+1)= ,且f(x)在[﹣3,﹣2]上是減函數(shù),若α,β是銳角三角形的兩個內(nèi)角,則( )
A.f(sinα)>f(sinβ)
B.f(cosα)>f(cosβ)
C.f(sinα)>f(cosβ)
D.f(sinα)<f(cosβ)
【答案】C
【解析】解:∵f(x+1)= ,∴f(x+2)=f(x),f(x)是周期為2的周期函數(shù). ∵y=f(x)是定義在R上的偶函數(shù),∴f(﹣x)=f(x),∵f(x)在[﹣3,﹣2]上是減函數(shù),
∴在[2,3]上是增函數(shù),∴在[0,1]上是增函數(shù),∵α,β是銳角三角形的兩個內(nèi)角.
∴α+β>90°,α>90°﹣β,兩邊同取正弦得:sinα>sin(90°﹣β)=cosβ,
且sinα、cosβ都在區(qū)間[0,1]上,
∴f(sinα)>f(cosβ),
故選:C.
由條件f(x+1)= 得到f(x)是周期為2的周期函數(shù),由f(x)是定義在R上的偶函數(shù),在[﹣3,﹣2]上是減函數(shù),得到f(x)在[2,3]上是增函數(shù),在[0,1]上是增函數(shù),再由α,β是銳角三角形的兩個內(nèi)角,得到α>90°﹣β,且sinα、cosβ都在區(qū)間[0,1]上,從而得到f(sinα)>f(cosβ).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一組數(shù)據(jù)的平均數(shù)是2.8,方差是3.6,若將這組數(shù)據(jù)中的每一個數(shù)據(jù)都加上60,得到一組新數(shù)據(jù),則所得新數(shù)據(jù)的平均數(shù)和方差分別是( )
A.57.2,3.6
B.57.2,56.4
C.62.8,63.6
D.62.8,3.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點,作EF⊥PB交PB于點F.
(1)證明PA∥平面EDB;
(2)證明PB⊥平面EFD;
(3)求二面角C﹣PB﹣D的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】六個面都是平行四邊形的四棱柱稱為平行六面體.已知在平行四邊形ABCD中(如圖1),有AC2+BD2=2(AB2+AD2),則在平行六面體ABCD﹣A1B1C1D1中(如圖2),AC12+BD12+CA12+DB12等于( )
A.2(AB2+AD2+AA12)
B.3(AB2+AD2+AA12)
C.4(AB2+AD2+AA12)
D.4(AB2+AD2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AB=4,EC∥FD,F(xiàn)D⊥底面ABCD,M是AB的中點.
(1)求證:平面CFM⊥平面BDF;
(2)若點N為線段CE的中點,EC=2,F(xiàn)D=3,求證:MN∥平面BEF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點P(x,y)滿足方程xy=1(x>0).
(Ⅰ)求動點P到直線l:x+2y﹣ =0距離的最小值;
(Ⅱ)設(shè)定點A(a,a),若點P,A之間的最短距離為2 ,求滿足條件的實數(shù)a的取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px過點P(1,1).過點(0,)作直線l與拋物線C交于不同的兩點M,N,過點M作x軸的垂線分別與直線OP、ON交于點A,B,其中O為原點.
(Ⅰ)求拋物線C的方程,并求其焦點坐標和準線方程;
(Ⅱ)求證:A為線段BM的中點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“一帶一路”的建設(shè)中,中石化集團獲得了某地深海油田區(qū)塊的開采權(quán),集團在該地區(qū)隨機初步勘探了幾口井,取得了地質(zhì)資料.進入全面勘探時期后,集團按網(wǎng)絡(luò)點來布置井位進行全面勘探.由于勘探一口井的費用很高,如果新設(shè)計的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費用.勘探初期數(shù)據(jù)資料下表:
井號I | 1 | 2 | 3 | 4 | 5 | 6 |
坐標 | ||||||
鉆探深度 | 2 | 4 | 5 | 6 | 8 | 10 |
出油量 | 40 | 70 | 110 | 90 | 160 | 205 |
(1)在散點圖中號舊井位置大致分布在一條直線附近,借助前5組數(shù)據(jù)求得回歸線方程為,求,并估計的預(yù)報值;
(2)現(xiàn)準備勘探新井,若通過1、3、5、7號井計算出的的值(精確到0.01)相比于(1)中的值之差(即: )不超過10%,則使用位置最接近的已有舊井,否則在新位置打井,請判斷可否使用舊井?(參考公式和計算結(jié)果: )
(3)設(shè)出油量與鉆探深度的比值不低于20的勘探井稱為優(yōu)質(zhì)井,在原有井號的井中任意勘探3口井,求恰好2口是優(yōu)質(zhì)井的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 , 滿足| |= ,| |=1,且對任意實數(shù)x,不等式| +x |≥| + |恒成立,設(shè) 與 的夾角為θ,則tan2θ=( )
A.﹣
B.
C.﹣
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com