【題目】有下列命題:①若,則;②若,則存在唯一實數(shù),使得;③若,則;④若,且與的夾角為鈍角,則;⑤若平面內(nèi)定點滿足,則為正三角形.其中正確的命題序號為 ________.
【答案】③⑤
【解析】
①:根據(jù)零向量與任一平面向量平行進行判斷即可;
②:根據(jù)零向量與任一平面向量平行進行判斷即可;
③:對已知向量等式進行平方,根據(jù)平面向量的運算性質(zhì)進行求解即可;
④:根據(jù)平面向量夾角的坐標(biāo)表示公式,結(jié)合鈍角的取值范圍進行求解即可;
⑤:根據(jù)平面向量加法的幾何意義,結(jié)合可以判斷出點是的重心,再根據(jù)平面向量減法的幾何意義,結(jié)合,可以判斷出點是的垂心,這樣可以確定的形狀.
①:當(dāng)時,顯然滿足,但是不一定成立,故本命題是假命題;
②:當(dāng)時,顯然成立,存在實數(shù),使得,但是不是唯一的,故本命題是假命題;
③:因為,
所以,故本命題是真命題;
④:設(shè)與的夾角為,所以當(dāng)時,
則有且,
即且,
解得且,故本命題是假命題;
⑤:因為所以,設(shè)中邊上的中點為,
如圖所示;
由平面向量的加法的幾何意義可知;,
所以,因此點是的重心.
,
因此有,同理可得,所以點是的垂心,
因此為正三角形,故本命題是真命題.
故答案為;③⑤
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某移動支付公司隨機抽取了100名移動支付用戶進行調(diào)查,得到如下數(shù)據(jù):
每周移動支付次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合計 | 10 | 8 | 7 | 11 | 14 | 50 |
(1)在每周使用移動支付超過3次的樣本中,按性別用分層抽樣隨機抽取5名用戶.
①求抽取的5名用戶中男、女用戶各多少人;
②從這5名用戶中隨機抽取2名用戶,求抽取的2名用戶均為男用戶的概率.
(2)如果認(rèn)為每周使用移動支付次數(shù)超過3次的用戶“喜歡使用移動支付”,能否在犯錯誤概率不超過0.05的前提下,認(rèn)為“喜歡使用移動支付”與性別有關(guān)?
附表及公式:
0.50 | 0.25 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
0.455 | 1.323 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校調(diào)查了200名學(xué)生每周的自習(xí)時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習(xí)時間的范圍是[17.5,30],樣本數(shù)據(jù)分組為[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根據(jù)直方圖,這200名學(xué)生中每周的自習(xí)時間不少于22.5小時的人數(shù)是
A. 56 B. 60 C. 120 D. 140
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(Ⅰ)設(shè)命題實數(shù)滿足,其中,命題實數(shù)滿足.若是的充分不必要條件,求實數(shù)的取值范圍.
(Ⅱ)已知命題方程表示焦點在x軸上雙曲線;命題空間向量,的夾角為銳角,如果命題“”為真,命題“”為假.求的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖的多面體中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中點.
(Ⅰ)求證:AB∥平面DEG;
(Ⅱ)求二面角C-DF-E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是公差不為零的等差數(shù)列,滿足,且、、成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列滿足,求數(shù)列的前項和.
【答案】(1);(2)
【解析】試題分析:(1)設(shè)等差數(shù)列 的公差為,由a3=7,且、、成等比數(shù)列.可得,解之得即可得出數(shù)列的通項公式;
2)由(1)得,則,由裂項相消法可求數(shù)列的前項和.
試題解析:(1)設(shè)數(shù)列的公差為,且由題意得,
即 ,解得,
所以數(shù)列的通項公式.
(2)由(1)得
,
.
【題型】解答題
【結(jié)束】
18
【題目】四棱錐的底面為直角梯形,,,,為正三角形.
(1)點為棱上一點,若平面,,求實數(shù)的值;
(2)求點B到平面SAD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】上饒某購物中心在開業(yè)之后,為了解消費者購物金額的分布,在當(dāng)月的電腦消費小票中隨機抽取張進行統(tǒng)計,將結(jié)果分成5組,分別是,制成如圖所示的頻率分布直方圖(假設(shè)消費金額均在元的區(qū)間內(nèi)).
(1)若在消費金額為元區(qū)間內(nèi)按分層抽樣抽取6張電腦小票,再從中任選2張,求這2張小票均來自元區(qū)間的概率;
(2)為做好五一勞動節(jié)期間的商場促銷活動,策劃人員設(shè)計了兩種不同的促銷方案:
方案一:全場商品打8.5折;
方案二:全場購物滿200元減20元,滿400元減50元,滿600元減80元,滿800元減120元,以上減免只取最高優(yōu)惠,不重復(fù)減免.利用直方圖的信息分析哪種方案優(yōu)惠力度更大,并說明理由(直方圖中每個小組取中間值作為該組數(shù)據(jù)的替代值).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)為偶函數(shù),求實數(shù)的值;
(2)若,,且函數(shù)在上是單調(diào)函數(shù),求實數(shù)的值;
(3)若,若當(dāng)時,總有,使得,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com