已知二次函數(shù)y=x2+2ax+3,x∈[-4,6]
(1)若a=-1寫出函數(shù)的單調(diào)增區(qū)間和減區(qū)間
(2)若a=-2求函數(shù)的最大值和最小值:
(3)若函數(shù)在[-4,6]上是單調(diào)函數(shù),求實數(shù)a的取值范圍.
考點:二次函數(shù)在閉區(qū)間上的最值
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)代入,利用配方法求單調(diào)區(qū)間;
(2)代入,利用配方法求最值;
(3)由二次函數(shù)的性質(zhì)求實數(shù)a的取值范圍.
解答: 解:(1)若a=-1,則y=x2+2ax+3=(x-1)2+2,
則函數(shù)的單調(diào)增區(qū)間為[1,6],減區(qū)間[-4,1];
(2)若a=-2,則y=x2+2ax+3=(x-2)2-1,
∵x∈[-4,6],∴x-2∈[-6,4];
∴-1≤(x-2)2-1≤35;
∴函數(shù)的最大值為f(-4)=35;最小值為f(2)=-1.
(3)若函數(shù)在[-4,6]上是單調(diào)函數(shù),
則-a≥6或-a≤-4,
則a≤-6或a≥4.
點評:本題考查了二次函數(shù)的性質(zhì),注意二次函數(shù)的開口方向及對稱軸,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過兩點A(7,4),B(-3,2)的直線斜率為( 。
A、-
1
5
B、
1
5
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義運算
.
ab
cd
.
=ad-bc,則符合條件
.
z1+i
1-i1+2i
.
=0的復(fù)數(shù)z是(  )
A、
2
5
-
4
5
i
B、-
2
5
-
4
5
i
C、-
2
5
+
4
5
i
D、
2
5
+
4
5
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2015年國慶節(jié)之前,市教育局為高三學(xué)生在緊張學(xué)習(xí)之余,不忘體能素質(zhì)的提升,要求該市高三全體學(xué)生進行一套滿分為120分的體能測試,市教育局為了迅速了解學(xué)生體能素質(zhì)狀況,按照全市高三測試學(xué)生的先后順序,每間隔50人就抽取一人的抽樣方法抽取40分進行統(tǒng)計分析,將這40人的體能測試成績分成六段[80,85),[85,90),[90,95),[95,100),[100,105),[105,110)后,得到如下圖的頻率分布直方圖.
(1)市教育局在采樣中,用的是什么抽樣方法?并估計這40人體能測試成績平均數(shù);
(2)從體能測試成績在[80,90)的學(xué)生中任抽取2人,求抽出的2人體能測試成績在[85,90)概率.
參考數(shù)據(jù):82.5×0.01+87.5×0.02+92.5×0.04+97.5×0.06+102.5×0.05+107.5×0.02=19.4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2x+a在區(qū)間[-3,2]上的最大值是4,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
36
+
y2
16
=1
內(nèi)一點P(3,2),過點P的弦AB恰好被點P平分,則直線AB的方程為(  )
A、2x-3y=0
B、x+y-5=0
C、2x+3y-12=0
D、3x-2y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx-ax-3(a∈R)
(1)當a>0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,且函數(shù)g(x)=
1
2
x2
+nx+mf'(x)(m,n∈R) 當且僅當在x=1處取得極值,其中f′(x)為f(x)的導(dǎo)函數(shù),求m
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個彈簧在掛4kg的物體時,長20cm,在彈性限度內(nèi),所掛物體的重量每增加1kg,彈簧伸長1.5cm.寫出彈簧的長度y(cm)與所掛物體重量x(kg)之間關(guān)系的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩圓x2+y2-4x+6y=0和x2+y2-6x=0的連心線方程為
 

查看答案和解析>>

同步練習(xí)冊答案