函數(shù)y=
3
sinxcosx+cos2x-
1
2
的最小正周期是
 
考點(diǎn):三角函數(shù)的周期性及其求法
專題:三角函數(shù)的求值
分析:函數(shù)解析式利用二倍角的正弦、余弦函數(shù)公式化簡,再利用兩角和與差的正弦函數(shù)公式化為一個角的正弦函數(shù),找出ω的值,代入周期公式即可求出最小正周期.
解答: 解:y=
3
2
sin2x+
cos2x+1
2
-
1
2
=
3
2
sin2x+
1
2
cos2x=sin(2x+
π
6
),
∵ω=2,
∴最小正周期T=
2
=π.
故答案為:π
點(diǎn)評:此題考查了三角函數(shù)的周期性及其求法,熟練掌握周期公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

?x∈R,不等式4mx2-2mx-1<0恒成立, m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線過點(diǎn)P(2,1),則其離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果對定義在R上的函數(shù)f(x),對任意兩個不相等的實(shí)數(shù)x1,x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),則稱函數(shù)f(x)為“H函數(shù)”.給出下列函數(shù)①y=-x3+x+1;②y=3x-2(sinx-cosx);③y=ex+1;④f(x)=
ln|x|
 
 
 
,x≠0
0
 
 
 
 
 
 
,x=0
.以上函數(shù)是“H函數(shù)”的所有序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中,正確的有
 

①若點(diǎn)P(x0,y0)是拋物線y2=2px上一點(diǎn),則該點(diǎn)到拋物線的焦點(diǎn)F的距離是|PF|=x0+
P
2
;
②方程x2+y2-2x+1=0表示的圖形是圓;
③設(shè)定圓O上有一動點(diǎn)A,圓O內(nèi)一定點(diǎn)M,AM的垂直平分線與半徑OA的交點(diǎn)為點(diǎn)P,則P的軌跡為一橢圓;
④某工廠甲、乙、丙三個車間生產(chǎn)了同一種產(chǎn)品,數(shù)量分別為120件,80件,60件.為了解它們的產(chǎn)品質(zhì)量是否存在顯著差異,用分層抽樣方法抽取了一個容量為n的樣本進(jìn)行調(diào)查,其中從丙車間的產(chǎn)品中抽取了3件,則n=13;
⑤雙曲線
y2
49
-
x2
25
=-1的漸近線方程是y=±
5
7
x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)(1+2i)
.
z
=3-4i(i為虛數(shù)單位),則|z|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log2(|x-1|+|x-2|-3)的定義域?yàn)?div id="t9r9z9t" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
x=
t
y=2t
(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.直線l的極坐標(biāo)方程為ρcosθ-ρsinθ+1=0.則l與C的交點(diǎn)直角坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線x2-
y2
3
=1
的左右兩支上各有一點(diǎn)A,B,點(diǎn)B在直線x=
1
2
上的射影是點(diǎn)B′,若直線AB過右焦點(diǎn),則直線AB′必過點(diǎn)( 。
A、(1,0)
B、(
5
4
,0
C、(
3
2
,0
D、(
7
4
,0

查看答案和解析>>

同步練習(xí)冊答案