【題目】已知橢圓 的左頂點為,右焦點為, 為原點, , 軸上的兩個動點,且,直線分別與橢圓交于, 兩點.

 

(Ⅰ)求的面積的最小值;

(Ⅱ)證明: , , 三點共線.

【答案】(1)1;(2)詳見解析。

【解析】試題分析:(Ⅰ)設(shè) ,然后根據(jù)求得的值,從而得到的表達式,從而利用基本不等式求出最小值,;(Ⅱ)首先設(shè)出直線的方程,然后聯(lián)立橢圓方程,利用韋達定理得到點坐標間的關(guān)系,從而使問題得證.

試題解析:(Ⅰ)設(shè), ,∵,可得,

,當且僅當時等號成立.

,

∴四邊形的面積的最小值為1.

(Ⅱ)∵, ,∴直線的方程為,

,

,得,①

同理可得,

,∵

故由①②可知: ,

代入橢圓方程可得

,故, 分別在軸兩側(cè), ,

,∴, 三點共線.

點睛:解決圓錐曲線中的最值問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來解決,非常巧妙;二是將圓錐曲線中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于下列命題: ①若函數(shù)y=2x的定義域是{x|x≤0},則它的值域是{y|y≤1};
②若函數(shù)y= 的定義域是{x|x>2},則它的值域是{y|y≤ };
③若函數(shù)y=x2的值域是{y|0≤y≤4},則它的定義域一定是{x|﹣2≤x≤2};
④若函數(shù)y=log2x的值域是{y|y≤3},則它的定義域是{x|0<x≤8}.
其中不正確的命題的序號是 . (注:把你認為不正確的命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究小組在電腦上進行人工降雨模擬實驗,準備用、三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,其試驗數(shù)據(jù)統(tǒng)計如表:

方式

實施地點

大雨

中雨

小雨

模擬實驗總次數(shù)

4次

6次

2次

12次

3次

6次

3次

12次

2次

2次

8次

12次

假定對甲、乙、丙三地實施的人工降雨彼此互不影響,請你根據(jù)人工降雨模擬實驗的統(tǒng)計數(shù)據(jù):

(Ⅰ)求甲、乙、丙三地都恰為中雨的概率;

(Ⅱ)考慮到旱情和水土流失,如果甲地恰需中雨即達到理想狀態(tài),乙地必須是大雨才達到理想狀態(tài),丙地只能是小雨或中雨即達到理想狀態(tài),記“甲、乙、丙三地中達到理想狀態(tài)的個數(shù)”為隨機變量,求隨機變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖幾何體中,矩形所在平面與梯形所在平面垂直,且, , , 的中點.

(1)證明: 平面;

(2)證明: 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面為平行四邊形, , , .

(Ⅰ)證明: 平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第十二屆全國人名代表大會第五次會議和政協(xié)第十二屆全國委員會第五次會議(簡稱兩會)分別于2017年3月5日和3月3日在北京開幕,某高校學(xué)生會為了解該校學(xué)生對全國兩會的關(guān)注情況,隨機調(diào)查了該校200名學(xué)生,并將這200名學(xué)生分為對兩會“比較關(guān)注”與“不太關(guān)注”兩類,已知這200名學(xué)生中男生比女生多20人,對兩會“比較關(guān)注”的學(xué)生中男生人數(shù)與女生人數(shù)之比為,對兩會“不太關(guān)注”的學(xué)生中男生比女生少5人.

(1)該校學(xué)生會從對兩會“比較關(guān)注”的學(xué)生中根據(jù)性別進行分層抽樣,從中抽取7人,再從這7人中隨機選出2人參與兩會宣傳活動,求這2人全是男生的概率.

(2)根據(jù)題意建立列聯(lián)表,并判斷是否有99%的把握認為男生與女生對兩會的關(guān)注有差異?

附: ,其中.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)的新產(chǎn)品必須先靠廣告打開銷路,該產(chǎn)品廣告效應(yīng)y(單位:元)是產(chǎn)品的銷售額與廣告費x(單位:元)之間的差,如果銷售額與廣告費x的算術(shù)平方根成正比,根據(jù)對市場的抽樣調(diào)查,每付出100元的廣告費,所得銷售額是1000元. (Ⅰ)求出廣告效應(yīng)y與廣告費x之間的函數(shù)關(guān)系式;
(Ⅱ)該企業(yè)投入多少廣告費才能獲得最大的廣告效應(yīng)?是不是廣告費投入越多越好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】王明參加某衛(wèi)視的闖關(guān)活動,該活動共3關(guān).設(shè)他通過第一關(guān)的概率為0.8,通過第二、第三關(guān)的概率分別為pq,其中,并且是否通過不同關(guān)卡相互獨立.記ξ為他通過的關(guān)卡數(shù),其分布列為:

ξ

0

1

2

3

P

0.048

a

b

0.192

(Ⅰ)求王明至少通過1個關(guān)卡的概率;

(Ⅱ)求p,q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車是指由企業(yè)在校園、公交站點、商業(yè)區(qū)、公共服務(wù)區(qū)等場所提供的自行車單車共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來越多地引起了人們的關(guān)注.某部門為了對該城市共享單車加強監(jiān)管,隨機選取了100人就該城市共享單車的推行情況進行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照[50,60),[60,70),…,[90,100] 分成5組,制成如圖所示頻率分直方圖.

(1) 求圖中的值;

(2) 已知滿意度評分值在[90,100]內(nèi)的男生數(shù)與女生數(shù)的比為2:1,若在滿意度評分值為[90,100]的人中隨機抽取4人進行座談,設(shè)其中的女生人數(shù)為隨機變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案