分析 (1)因為25<28<30,所以把x=28代入y=40-x即可求出該產(chǎn)品的年銷售量為多少萬件;
(2)由(1)中y于x的函數(shù)關系式和根據(jù)年獲利=年銷售收入-生產(chǎn)成本-投資成本,得到w和x的二次函數(shù)關系,再有x的取值范圍不同分別討論即可知道該公司是盈利還是虧損,若盈利,最大利潤是多少?若虧損,最小虧損是多少?
解答 解:(1)∵25≤28≤30,$y=\left\{\begin{array}{l}40-x({25≤x≤30})\\ 25-0.5x({30<x≤35})\end{array}\right.$,
∴把x=28代入y=40-x得y=12(萬件),
答:當銷售單價定為28元時,該產(chǎn)品的年銷售量為12萬件;
(2)①當 25≤x≤30時,W=(40-x)(x-20)-25-100=-x2+60x-925=-(x-30)2-25,
故當x=30時,W最大為-25,即公司最少虧損25萬;
②當30<x≤35時,W=(25-0.5x)(x-20)-25-100
=-$\frac{1}{2}$x2+35x-625=-$\frac{1}{2}$(x-35)2-12.5
故當x=35時,W最大為-12.5,即公司最少虧損12.5萬;
對比①,②得,投資的第一年,公司虧損,最少虧損是12.5萬;
答:投資的第一年,公司虧損,最少虧損是12.5萬.
點評 本題主要考查二次函數(shù)在實際中應用,最大銷售利潤的問題常利函數(shù)的增減性來解答,我們首先要弄懂題意,確定變量,建立函數(shù)模型解答,其中要注意應該在自變量的取值范圍內(nèi)求最大值.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com