6.設(shè)f(x)=ax2+2x-3,g(x)=x2+(1-a)x-a,M={x|f(x)≤0},P={x|g(x)≥0}.若M∩P=R,則實(shí)數(shù)a的取值集合為{-1}.

分析 M∩P=R,M=P=R,利用判別式,即可得出結(jié)論.

解答 解:∵M(jìn)∩P=R,∴M=P=R,
∴$\left\{\begin{array}{l}{a<0}\\{4+12a≤0}\end{array}\right.$,且(1-a)2+4a≤0,
∴a=-1,
故答案為:{-1}.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.我校為進(jìn)行“陽(yáng)光運(yùn)動(dòng)一小時(shí)”活動(dòng),計(jì)劃在一塊直角三角形ABC的空地上修建一個(gè)占地面積為S(平方米)的矩形AMPN健身場(chǎng)地.如圖,點(diǎn)M在AC上,點(diǎn)N在AB上,且P點(diǎn)在斜邊BC上.已知∠ACB=60°,|AC|=30米,|AM|=x米,x∈[10,20].設(shè)矩形AMPN健身場(chǎng)地每平方米的造價(jià)為$\frac{37k}{{\sqrt{S}}}$元,再把矩形AMPN以外(陰影部分)鋪上草坪,每平方米的造價(jià)為$\frac{12k}{{\sqrt{S}}}$元(k為正常數(shù)).
(1)試用x表示S,并求S的取值范圍;
(2)求總造價(jià)T關(guān)于面積S的函數(shù)T=f(S);
(3)如何選取|AM|,使總造價(jià)T最低(不要求求出最低造價(jià)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知實(shí)數(shù)x,y滿足x2+y2≤1,則
(1)(x+2)2+(y-2)2的最小值是9-4$\sqrt{2}$;
(2)|2x+y-4|+|6-x-3y|的最大值是15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知a,b,c均為正數(shù),且分別為函數(shù)$f(x)={2^x}-{log_{\frac{1}{2}}}x$,$g(x)={(\frac{1}{2})^x}-{log_{\frac{1}{2}}}x$,$h(x)={(\frac{1}{2})^x}-{log_{\frac{2}{3}}}x$的零點(diǎn),則( 。
A.a<b<cB.c<b<aC.c<a<bD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某公司以25萬(wàn)元購(gòu)得某項(xiàng)節(jié)能產(chǎn)品的生產(chǎn)技術(shù)后,再投入100萬(wàn)元購(gòu)買生產(chǎn)設(shè)備,進(jìn)行該產(chǎn)品的生產(chǎn)加工.已知生產(chǎn)這種產(chǎn)品的成本價(jià)為每件20元.經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),該產(chǎn)品的銷售單價(jià)定在25元到35元之間較為合理,并且該產(chǎn)品的年銷售量y(萬(wàn)件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式為$y=\left\{\begin{array}{l}40-x({25≤x≤30})\\ 25-0.5x({30<x≤35})\end{array}\right.$.
(年獲利=年銷售收入-生產(chǎn)成本-投資成本)
(1)當(dāng)銷售單價(jià)定為28元時(shí),該產(chǎn)品的年銷售量為多少?
(2)求該公司第一年的年獲利W(萬(wàn)元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式,并說(shuō)明投資的第一年,該公司是盈利還是虧損.若是盈利,最大利潤(rùn)是多少?若是虧損,最小虧損是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如果定義在R上的函數(shù)f(x)對(duì)任意兩個(gè)不等的實(shí)數(shù)x1,x2都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),則稱函數(shù)f(x)為“Z函數(shù)”.給出函數(shù):①y=-x3+1;②y=2x;③$y=\left\{{\begin{array}{l}{ln|x|,x≠0}\\{0,x=0}\end{array}}\right.$;④$y=\left\{{\begin{array}{l}{{x^2}+4x,x≥0}\\{-{x^2}+x,x<0}\end{array}}\right.$.以上函數(shù)為“Z函數(shù)”的序號(hào)為②④,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在如圖所示的正方體中.
(1)指出哪些棱與BB1是異面直線,哪些棱與對(duì)角線BD1是異面直線.
(2)分別求出直線DD1與BC1、A1D1及DC1所成的角度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在△ABC中,已知tanAtanB=$\frac{4}{3}$,
(1)求tanC的取值范圍;
(2)若△ABC邊AB上的高CD=2.求△ABC面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知cosα=$\frac{1}{4}$,求$\frac{sin(2π+α)cos(-π+α)}{cos(-α)tanα}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案