14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{4}^{x},x≤\frac{1}{2}}\\{lo{g}_{a}x,x>\frac{1}{2}}\end{array}\right.$的最大值是2,則實(shí)數(shù)a的取值范圍是( 。
A.(0,$\frac{\sqrt{2}}{2}$]B.(1,$\sqrt{2}$)C.(0,1)D.(0,$\frac{\sqrt{2}}{2}$)

分析 由題意可化為當(dāng)x$>\frac{1}{2}$時(shí),logax≤2恒成立;從而討論底數(shù)以確定函數(shù)單調(diào)性,從而解得.

解答 解:∵f($\frac{1}{2}$)=$\sqrt{4}$=2,
且函數(shù)f(x)=$\left\{\begin{array}{l}{{4}^{x},x≤\frac{1}{2}}\\{lo{g}_{a}x,x>\frac{1}{2}}\end{array}\right.$的最大值是2,
∴當(dāng)x$>\frac{1}{2}$時(shí),logax≤2恒成立;
當(dāng)a>1時(shí),logax≤2不可能恒成立;
當(dāng)0<a<1時(shí),logax≤2恒成立可化為
$\frac{1}{2}$≥a2,
即0<a≤$\frac{\sqrt{2}}{2}$;
故選A.

點(diǎn)評(píng) 本題考查了分段函數(shù)的應(yīng)用及對(duì)數(shù)函數(shù)的性質(zhì)的判斷與應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知a>1,b>0,a+b=2,則$\frac{1}{a-1}$+$\frac{1}$的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知在平面直角坐標(biāo)系中,點(diǎn)A(2$\sqrt{2}$,0),B(0,1)到直線l的距離分別為1和2,則這樣的直線l共有3條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若關(guān)于x的方程($\frac{1}{9}$)x+($\frac{1}{3}$)x-2-a=0有正數(shù)解,則實(shí)數(shù)a的取值范圍是(0,10).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知sin($\frac{π}{4}$+2α)sin($\frac{π}{4}$-2α)=$\frac{1}{4}$,則2sin22α-1=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知等比數(shù)列{an}滿足27a2-a5=0,a1a2=a3
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)若bn=3log3an+3,求證:{bn}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知命題P:關(guān)于x的方程x2-(a+3)x+a+3=0有兩個(gè)不等正實(shí)根;命題Q:不等式ax2-(a+3)x-1<0對(duì)任意實(shí)數(shù)x均成立.若P∨Q是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}中an>0,其前n項(xiàng)和為Sn,且對(duì)任意的n∈N*,都有Sn=$\frac{1}{4}$(a${\;}_{n}^{2}$+2an+1),等比數(shù)列{bn}的通項(xiàng)公式為bn=3n
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{(-1)nan+bn}的前n項(xiàng)和Tn;
(3)設(shè)cn=2${\;}^{1+{a}_{n}}$+(-1)nt•bn(t為非零整數(shù),n∈N*),若對(duì)任意n∈N*,cn+1>cn恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.判斷下列函數(shù)是否為偶函數(shù):
(1)f(x)=x2-2x;
(2)f(x)=$\frac{1}{{x}^{2}}$;
(3)f(x)=$\root{3}{x}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案