函數(shù)f(x)=x3-3ax-1,a≠0,
(Ⅰ)當(dāng)a=2求f(x)在(1,f(1))處的切線方程;
(Ⅱ)若f(x)在x=-1處取得極值,關(guān)于x的方程f(x)=m有3個(gè)不同實(shí)根,求實(shí)數(shù)m的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)求導(dǎo)函數(shù),可得切線斜率,求出切點(diǎn)坐標(biāo),即可求出函數(shù)y=f(x)圖象在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)由f(x)在x=-1處取得極值,結(jié)合圖象求出方程f(x)=m有三個(gè)不等的實(shí)根時(shí)m的取值范圍.
解答: 解:(Ⅰ)∵a=2,f(x)=x3-6x-1,
∴f′(x)=3(x2-2),f(1)=-6,
∴f′(1)=-3,
∴f(x)在(1,f(1))處的切線方程為y+6=-3(x-1),
即3x+y+3=0;
(Ⅱ)∵f(x)的導(dǎo)數(shù)是f′(x)=3x2-3a=3(x2-a),
且f(x)在x=-1處取得極值,
∴3[(-1)2-a]=0,∴a=1;
∴f′(x)=3(x+1)(x-1);
由(1)知,當(dāng)x=-1時(shí),f(x)有極大值1;
當(dāng)x=1時(shí),f(x)有極小值-3;如圖,
方程f(x)=m有三個(gè)不等的實(shí)根時(shí),-3<m<1;
∴m的取值范圍是{m|-3<m<1}.
點(diǎn)評(píng):考查學(xué)生利用導(dǎo)數(shù)研究函數(shù)極值的能力,以及利用導(dǎo)數(shù)研究曲線上某點(diǎn)的切線方程的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求證:2n
-C
1
n
2n-1+
C
2
n
2n-2+…+
C
n-1
n
2+(-1)n=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算1×3×5×7×…×99值,要求畫上程序框圖,寫出程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于x的不等式ax2-2≥2x-ax.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l過(guò)點(diǎn)P(2,1),且在兩個(gè)坐標(biāo)軸上的截距相等,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解不等式組
x2-6x+8>0
(x-1)(5-x)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xlnx(x∈(0,+∞)).
(1)求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=2f(x)-blnx+x在x∈[1,+∞)上存在零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)計(jì)一個(gè)算法,找滿足2×4×6×…×2n>100000條件的最小正整數(shù),并編寫程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:函數(shù)f(x)=
2x-1(x<3)
1nx(x≥3)
,則f|f(e2)|
 

查看答案和解析>>

同步練習(xí)冊(cè)答案