【題目】如圖,四棱錐,底面為矩形,平面,為的中點.
(1)證明:平面;
(2)設(shè)二面角為60°,,,求直線與平面所成角的正弦值.
【答案】(1)見解析;(2).
【解析】
(1)連接輔助線構(gòu)造三角形,利用三角形中位線定理證明線線平行,再通過線線平行證明線面平行;
(2)建立空間直角坐標(biāo)系,通過二面角為60°,利用平面法向量求出點的坐標(biāo),再利用法向量求直線與平面所成角的正弦值.
(1)如圖,
連接,且,則在矩形中為中點,
且在中,為的中點,
∴
且平面,平面,
∴平面;
(2)如圖以為原點,以為軸,以為軸,以為軸建立空間直角坐標(biāo)系,
,,
設(shè),, ,,
∴,,
設(shè)平面、平面和平面的法向量分別為,,
則有,
∴,
令,則有,
同理可得,,
∵二面角為60°
∴,
∴,
解得,
∴,,
設(shè)與所成角為,
∴,
即直線與平面所成角的正弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若函數(shù)的定義域為,且存在非零常數(shù),對任意 , 恒成立,則稱為線周期函數(shù), 為的線周期.
(1)下列函數(shù)①,②,③(其中表示不超過x的最大整數(shù)),是線周期函數(shù)的是 (直接填寫序號);
(2)若為線周期函數(shù),其線周期為,求證: 為周期函數(shù);
(3)若為線周期函數(shù),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】實數(shù)a,b滿足ab>0且a≠b,由a、b、、按一定順序構(gòu)成的數(shù)列( 。
A. 可能是等差數(shù)列,也可能是等比數(shù)列
B. 可能是等差數(shù)列,但不可能是等比數(shù)列
C. 不可能是等差數(shù)列,但可能是等比數(shù)列
D. 不可能是等差數(shù)列,也不可能是等比數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線過點,且焦點為F,直線l與拋物線相交于A,B兩點.
⑴求拋物線C的方程,并求其準(zhǔn)線方程;
⑵為坐標(biāo)原點.若,證明直線l必過一定點,并求出該定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C過點M(0,-2)、N(3,1),且圓心C在直線x+2y+1=0上.
(1)求圓C的方程;
(2)設(shè)直線ax-y+1=0與圓C交于A,B兩點,是否存在實數(shù)a,使得過點P(2,0)的直線l垂直平分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, ,且.
(Ⅰ)當(dāng)時,證明:平面平面;
(Ⅱ)當(dāng)四棱錐的體積為,且二面角為鈍角時,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,邊a、b、c分別是角A、B、C的對邊,且滿足bcosC=(3a-c)cosB
(1)求cosB
(2)若△ABC的面積為4,b=4,求△ABC的周長
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大;
(2)若△ABC的面積S=5,b=5,求sinBsinC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是首項的等差數(shù)列,設(shè).
(1)求證:是等比數(shù)列;
(2)記,求數(shù)列的前項和;
(3)在(2)的條件下,記,若對任意正整數(shù),不等式恒成立,求整數(shù)的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com