已知全集U={x|1≤x≤7,x∈Z},A={1,3,5,7},B={2,4,5},則B∩(∁UA)=( 。
A、{5}
B、{2,4}
C、{2,4,5,6}
D、{1,3,5,6,7}
考點:交、并、補集的混合運算
專題:集合
分析:由全集U以及A,求出A的補集,找出B與A補集的交集即可.
解答: 解:∵全集U={x|1≤x≤7,x∈Z}={1,2,3,4,5,6,7},A={1,3,5,7},B={2,4,5},
∴∁UA={2,4,6},
則B∩(∁UA)={2,4}.
故選:B.
點評:此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=2sinx,x∈[
π
2
,
2
]和y=±2的圖象圍成了一個封閉圖形,此封閉圖形的面積是(  )
A、4B、2πC、4πD、8π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)為偶函數(shù)的是(  )
A、y=|x-1|
B、y=x3
C、y=
x
D、y=ln
x2+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U=R,集合A={x|y=
1
x+1
},B={x|y=loga(x+2)},則集合(∁UA)∩B=( 。
A、(-2,-1)
B、(-2,-1]
C、(-∞,-2)
D、(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的偶函數(shù)f(x)滿足f(x)=-f(x+2),且當x∈[-2,0]時,f(x)=(
1
2
)x-1
,若在x∈[-2,6]內(nèi)關于x的方程f(x)-loga(x+2)=0恰有3個不同的實數(shù)根,則a的取值范圍是( 。
A、(1,2)
B、(2,+∞)
C、(
34
,2)
D、(1,
34
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)(x∈R)的圖象如圖所示,則函數(shù)g(x)=logaf(x)(0<a<1)的減區(qū)間是( 。
A、(0,
1
2
B、(-∞,0)∪[
1
2
,+∞)
C、[
a
,1]
D、[
a
,
a+1
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cos2x+2
3
sinxcosx-sin2x.
(Ⅰ)求f(x)的最小正周期和單調遞增區(qū)間;
(Ⅱ)在△ABC中,角A,B,C所對的邊分別是a,b,c,若f(
A
2
)=2,a=
3
,b=1,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

半徑為4m的水輪如圖所示,水輪圓心O距離水面2m,已知水輪沿逆時針方向勻速旋轉,每分鐘轉動6圈,如果當水輪上點P從水中浮現(xiàn)時(圖中點P0)開始計算時間.
(1)將點P距離水面的高度z(m)表示為時間t(s)的函數(shù);
(2)在水輪轉動的一圈內(nèi),有多長時間點P距離水面超過4m?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知角α的頂點為原點,始邊為x軸的正半軸,若角α的終邊過P(-3a,4a),a≠0,求2sinα+cosα的值.

查看答案和解析>>

同步練習冊答案