已知全集U=R,集合A={x|y=
1
x+1
},B={x|y=loga(x+2)},則集合(∁UA)∩B=( 。
A、(-2,-1)
B、(-2,-1]
C、(-∞,-2)
D、(-1,+∞)
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:求出A與B中x的范圍確定出A與B,求出A補(bǔ)集與B的交集即可.
解答: 解:由A中y=
1
x+1
,得到x+1>0,即x>-1,
∴A=(-1,+∞),
∵全集U=R,∴∁UA=(-∞,-1],
由B中y=loga(x+2),得到x+2>0,即x>-2,
∴B=(-2,+∞),
則(∁UA)∩B=(-2,-1].
故選:B.
點(diǎn)評(píng):此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“若a>0,則ac2≥0”的逆命題是( 。
A、若a>0,則ac2<0
B、若ac2≥0,則a>0
C、若ac2<0,則a≤0
D、若a≤0,則ac2<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義域?yàn)镽的函數(shù)y=f(x)的值域?yàn)閇a,b],則函數(shù)y=f(x-3a)的值域?yàn)椋ā 。?/div>
A、[2a,a+b]
B、[0,b-a]
C、[a,b]
D、[-a,a+b]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的部分圖象如圖所示,則f(x)的解析式可能為( 。
A、f(x)=2sin(
x
2
-
π
6
B、f(x)=
2
cos(4x+
π
4
C、f(x)=2cos(
x
2
-
π
3
D、f(x)=2sin(4x+
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P是平面區(qū)域
3x-y-6≤0
x-y+2≥0
x≥0
內(nèi)的動(dòng)點(diǎn),向量
a
=(1,3),則
OP
a
的最小值為( 。
A、-1B、-12
C、-6D、-18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線kx-y+k+1=0(k∈R)上存在點(diǎn)(x,y)滿足
x+y-3≤0
x-2y-3≤0
x≥1
,則實(shí)數(shù)k的取值范圍為( 。
A、[-
5
3
,+∞)
B、(-∞,-
5
3
]
C、[-1,
1
2
]
D、[-
1
4
,
1
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U={x|1≤x≤7,x∈Z},A={1,3,5,7},B={2,4,5},則B∩(∁UA)=( 。
A、{5}
B、{2,4}
C、{2,4,5,6}
D、{1,3,5,6,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a(x-1)2+x-1,g(x)=lnx.
(Ⅰ)若a=1,求F(x)=g(x)-f(x)在(0,+∞)上的最小值;
(Ⅱ)證明:對(duì)任意的正整數(shù)n,不等式2+
3
4
+
4
9
+…+
n+1
n
>ln(n+1)都成立;
(Ⅲ)是否存在實(shí)數(shù)a(a>0),使得方程
2g(x)
x
=f′(x+1)-(4a-1)在區(qū)間(
1
e
,e)內(nèi)有且只有兩個(gè)不相等的實(shí)數(shù)根?若存在,請(qǐng)求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
(1)(
32
×
3
)6
+(
2
)
4
3
-(-2013)0
(2)log23×log34×log48.

查看答案和解析>>

同步練習(xí)冊(cè)答案