【題目】已知橢圓:的長軸長為4,左、右頂點分別為,經(jīng)過點的動直線與橢圓相交于不同的兩點(不與點重合).
(1)求橢圓的方程及離心率;
(2)求四邊形面積的最大值;
(3)若直線與直線相交于點,判斷點是否位于一條定直線上?若是,寫出該直線的方程. (結論不要求證明)
【答案】(Ⅰ) ,離心率 (Ⅱ) (Ⅲ)
【解析】
(Ⅰ)由題意可知:m=1,可得橢圓方程,根據(jù)離心率公式即可求出
(Ⅱ)設直線CD的方程,代入橢圓方程,根據(jù)韋達定理,由SACBD=S△ACB+S△ADB,換元,根據(jù)函數(shù)的單調(diào)性即可求得四邊形ACBD面積的最大值.
(Ⅲ)點M在一條定直線上,且該直線的方程為x=4
(Ⅰ)由題意,得 , 解得.
所以橢圓方程為.
故,,.
所以橢圓的離心率.
(Ⅱ)當直線的斜率不存在時,由題意,得的方程為,
代入橢圓的方程,得,,
又因為,,
所以四邊形的面積.
當直線的斜率存在時,設的方程為,,,
聯(lián)立方程 消去,得.
由題意,可知恒成立,則,
四邊形的面積
,
設,則四邊形的面積,,
所以.
綜上,四邊形面積的最大值為.
(Ⅲ)結論:點在一條定直線上,且該直線的方程為.
科目:高中數(shù)學 來源: 題型:
【題目】定義在R上的偶函數(shù)f(x),且對任意實數(shù)x都有f(x+2)=f(x),當x∈[0,1]時,f(x)=x2,若在區(qū)間[﹣3,3]內(nèi),函數(shù)g(x)=f(x)﹣kx﹣3k有6個零點,則實數(shù)k的取值范圍為__.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線過點且與直線垂直,直線與軸交于點,點與點關于軸對稱,動點滿足.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)過點的直線與軌跡相交于兩點,設點,直線的斜率分別為,問是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】上海市旅游節(jié)剛落下帷幕,在旅游節(jié)期間,甲、乙、丙三位市民顧客分別獲得一些景區(qū)門票的折扣消費券,數(shù)量如表1,已知這些景區(qū)原價和折扣價如表2(單位:元).
表1:
數(shù)量 | 景區(qū)1 | 景區(qū)2 | 景區(qū)3 |
甲 | 0 | 2 | 2 |
乙 | 3 | 0 | 1 |
丙 | 4 | 1 | 0 |
表2:
門票 | 景區(qū)1 | 景區(qū)2 | 景區(qū)3 |
原價 | 60 | 90 | 120 |
折扣后價 | 40 | 60 | 80 |
(1)按照上述表格的行列次序分別寫出這三位市民獲得的折扣消費券數(shù)量矩陣A和三個景區(qū)的門票折扣后價格矩陣B;
(2)利用你所學的矩陣知識,計算三位市民各獲得多少元折扣?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為培養(yǎng)學生的閱讀習慣,某校開展了為期一年的“弘揚傳統(tǒng)文化,閱讀經(jīng)典名著”活動. 活動后,為了解閱讀情況,學校統(tǒng)計了甲、乙兩組各10名學生的閱讀量(單位:本),統(tǒng)計結果用莖葉圖記錄如下,乙組記錄中有一個數(shù)據(jù)模糊,無法確認,在圖中以a表示.
(Ⅰ)若甲組閱讀量的平均值大于乙組閱讀量的平均值,求圖中a的所有可能取值;
(Ⅱ)將甲、乙兩組中閱讀量超過15本的學生稱為“閱讀達人”. 設,現(xiàn)從所有的“閱讀達人”里任取2人,求至少有1人來自甲組的概率;
(Ⅲ)記甲組閱讀量的方差為. 若在甲組中增加一個閱讀量為10的學生,并記新得到的甲組閱讀量的方差為,試比較,的大小.(結論不要求證明)
(注:,其中為數(shù)據(jù)的平均數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2017高考新課標Ⅲ,理19)如圖,四面體ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)證明:平面ACD⊥平面ABC;
(2)過AC的平面交BD于點E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是橢圓與拋物線的一個公共點,且橢圓與拋物線具有一個相同的焦點.
(1)求橢圓及拋物線的方程;
(2)設過且互相垂直的兩動直線,與橢圓交于兩點,與拋物線交于兩點,求四邊形面積的最小值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著互聯(lián)網(wǎng)技術的快速發(fā)展,人們更加關注如何高效地獲取有價值的信息,網(wǎng)絡知識付費近兩年呈現(xiàn)出爆發(fā)式的增長,為了了解網(wǎng)民對網(wǎng)絡知識付費的態(tài)度,某網(wǎng)站隨機抽查了歲及以上不足歲的網(wǎng)民共人,調(diào)查結果如下:
(1)請完成上面的列聯(lián)表,并判斷在犯錯誤的概率不超過的前提下,能否認為網(wǎng)民對網(wǎng)絡知識付費的態(tài)度與年齡有關?
(2)在上述樣本中用分層抽樣的方法,從支持和反對網(wǎng)絡知識付費的兩組網(wǎng)民中抽取名,若在上述名網(wǎng)民中隨機選人,求至少1人支持網(wǎng)絡知識付費的概率.
附:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某區(qū)“創(chuàng)文明城區(qū)”簡稱“創(chuàng)城”活動中,教委對本區(qū)A,B,C,D四所高中校按各校人數(shù)分層抽樣調(diào)查,將調(diào)查情況進行整理后制成如表:
學校 | A | B | C | D |
抽查人數(shù) | 50 | 15 | 10 | 25 |
“創(chuàng)城”活動中參與的人數(shù) | 40 | 10 | 9 | 15 |
注:參與率是指:一所學!皠(chuàng)城”活動中參與的人數(shù)與被抽查人數(shù)的比值
假設每名高中學生是否參與“創(chuàng)城”活動是相互獨立的.
Ⅰ若該區(qū)共2000名高中學生,估計A學校參與“創(chuàng)城”活動的人數(shù);
Ⅱ在隨機抽查的100名高中學生中,從A,C兩學校抽出的高中學生中各隨機抽取1名學生,求恰有1人參與“創(chuàng)城”活動的概率;
Ⅲ若將表中的參與率視為概率,從A學校高中學生中隨機抽取3人,求這3人參與“創(chuàng)城”活動人數(shù)的分布列及數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com