設(shè)函數(shù)f(x)=x3-ax+b的圖象為曲線C
(Ⅰ)若函數(shù)f(x)不是R上的單調(diào)函數(shù),求實數(shù)a的范圍.
(Ⅱ)若過曲線C外的點A(1,0)作曲線C的切線恰有兩條,
(1)求a,b的關(guān)系式.
(2)若存在x0∈(0,+∞),使f(x0)>x0•e x0+a成立,求a的取值范圍.
考點:利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)由已知得f′(x)=3x2-a,由題意f′(x)=3x2-a=0有兩解,由此能求出實數(shù)a的范圍.
(Ⅱ)(1)設(shè)切點為(x0,y0),則切線方程為:y-y0=(3x0-a)(x-x0),由此利用導(dǎo)數(shù)性質(zhì)結(jié)合已知條件推導(dǎo)出a=b.
(2)?x0>0,x03-ax0+b>x0ex0+a,由已知得a<(x2-exmax,又(x2-exmax不存在,但其上確界是f(0)=-1,由此能求出a的范圍.
解答: 解:(Ⅰ)∵f(x)=x3-ax+b,
∴f′(x)=3x2-a,
由題意f′(x)=3x2-a=0有兩解,
∴a>0.
(Ⅱ)(1)設(shè)切點為(x0,y0),則切線方程為:y-y0=(3x0-a)(x-x0),
切線過(1,0),故-y0=(3x0-a)(1-x0),①,
y0=x03-ax0+b,②,
由①②消去y0,得2x03-3x02=b-a,
令g(x)=2x3-3x2,由g′(x)=6x2-6x,知極值點在0,1,極值為0,-1
故b=a,或b-a=-1,
但A點不在C上,故f(1)≠0,∴1-a+b≠0,
綜上:a=b.
(2)?x0>0,x03-ax0+b>x0ex0+a,
a<x02-ex0,a<(x2-exmax,
(x2-ex)′=2x-ex<0,∴x2-ex是遞減的,∴(x2-exmax不存在,
但其上確界是f(0)=-1,
故所求的a的范圍為:a<-1.
點評:本題主要考查了利用函數(shù)的導(dǎo)數(shù)求出函數(shù)的單調(diào)性以及函數(shù)的極值問題,考查學(xué)生分析解決問題的能力,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的能力,解題時要認真審題,注意導(dǎo)數(shù)性質(zhì)的合理運用.是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={a1,a2,a3}是由三個不同元素組成的集合,且T是A的子集組成的集合,滿足性質(zhì):空集和A屬于T,并且T中任何兩個元素的交集和并集還屬于T,則所有可能的T的個數(shù)為( 。
A、29B、33C、43D、59

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(-1,sin
a
2
)與向量
b
=(
4
5
,2cos
a
2
)垂直,其中α為第二象限角,求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是正比例函數(shù),函數(shù)g(x)是反比例函數(shù)且f(1)=1,g(1)=2,
(1)求函數(shù)f(x)和g(x)的解析式
(2)求證:函數(shù)p(x)=f(x)+g(x)在(0,
2
]上單調(diào)遞減
(3)求p(x)=f(x)+g(x)在(0,
2
]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=1-
1
3-2x-x2
的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a,b,c∈R,a≠0),對任意的x∈R,都有f(x-4)=f(2-x)成立;
(1)求2a-b的值;
(2)若a=1,f(0)=2,f(x)在區(qū)間[t,t+1](t∈R)上的最小值為2,求t的值;
(3)若函數(shù)f(x)取得最小值0,且對任意x∈R,不等式x≤f(x)≤(
x+1
2
2恒成立,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+1(a,b為實數(shù),a≠0,x∈R).
(1)當(dāng)函數(shù)f(x)的圖象過點(-1,0),且方程f(x)=0有且只有一個根,求f(x)的表達式;
(2)在(1)的條件下,當(dāng)x∈[-2,2]時,g(x)=f(x)-kx是單調(diào)函數(shù),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F(xiàn)為CD的中點.
(1)求證:AF∥平面BCE;
(2)求證:平面BCE⊥平面CDE;
(3)求二面角A-BC-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a2-a1=2,且2a2為3a1和a3的等差中項,
(1)求數(shù)列{an}的通項;
(2)若bn=n+an,求{bn}的前n項和.

查看答案和解析>>

同步練習(xí)冊答案