【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求曲線的普通方程和直線的直角坐標(biāo)方程;

(2)射線的極坐標(biāo)方程為,若射線與曲線的交點(diǎn)為,與直線的交點(diǎn)為,求線段的長.

【答案】(1);(2)2

【解析】

)(1)將參數(shù)方程消參得到普通方程,利用,把極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)系下的方程.

2)解法一:利用極坐標(biāo)的相關(guān)特點(diǎn)進(jìn)行求解.解法二:將極坐標(biāo)轉(zhuǎn)化為直接坐標(biāo)后進(jìn)行求解.

(1)由,可得:,

所以

所以曲線的普通方程為.

,可得,

所以,

所以直線的直角坐標(biāo)方程為.

(2)【解法一】

曲線的方程可化為

所以曲線的極坐標(biāo)方程為.

由題意設(shè),

代入,可得:,

所以(舍去),

代入,可得:,

所以.

【解法二】

因?yàn)樯渚的極坐標(biāo)方程為,

所以射線的直角坐標(biāo)方程為

解得,

解得

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,,平面,.

1)若的中點(diǎn),的中點(diǎn),求證:平面

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別是、,并且經(jīng)過點(diǎn).

(1)求橢圓的方程;

(2)若直線與圓相切,并與橢圓交于不同的兩點(diǎn)、.當(dāng),且滿足時(shí),求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年1月1日,濟(jì)南軌道交通號(hào)線試運(yùn)行,濟(jì)南軌道交通集團(tuán)面向廣大市民開展“參觀體驗(yàn),征求意見”活動(dòng),市民可以通過濟(jì)南地鐵APP搶票,小陳搶到了三張?bào)w驗(yàn)票,準(zhǔn)備從四位朋友小王,小張,小劉,小李中隨機(jī)選擇兩位與自己一起去參加體驗(yàn)活動(dòng),則小王被選中的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在等腰梯形中,,,點(diǎn)的中點(diǎn).將沿折起,使點(diǎn)到達(dá)的位置,得到如圖所示的四棱錐,點(diǎn)為棱的中點(diǎn).

(1)求證:平面;

(2)若平面平面,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形和菱形所在的平面相互垂直,,的中點(diǎn).

(1)求證:平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,側(cè)面PAD是邊長為2的等邊三角形且垂直于底 的中點(diǎn)。

1)證明:直線平面

2)點(diǎn)在棱上,且直線與底面所成角為,求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線y2xm與拋物線Cy22pxp0)交于點(diǎn)AB

1mp|AB|5,求拋物線C的方程;

2)若m4p,求證:OAOBO為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,四邊形是菱形,⊥平面.

(1)求證:平面⊥平面;

(2)若設(shè)與平面所成夾角為,且,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案