【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)當(dāng)時,記在區(qū)間的最大值為,最小值為,求的取值范圍.

【答案】(1)見詳解;(2) .

【解析】

(1)先求的導(dǎo)數(shù),再根據(jù)的范圍分情況討論函數(shù)單調(diào)性;(2) 討論的范圍,利用函數(shù)單調(diào)性進(jìn)行最大值和最小值的判斷,最終求得的取值范圍.

(1)求導(dǎo)得.所以有

當(dāng)時,區(qū)間上單調(diào)遞增,區(qū)間上單調(diào)遞減,區(qū)間上單調(diào)遞增;

當(dāng)時,區(qū)間上單調(diào)遞增;

當(dāng)時,區(qū)間上單調(diào)遞增,區(qū)間上單調(diào)遞減,區(qū)間上單調(diào)遞增.

(2)

在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,所以區(qū)間上最小值為.,故所以區(qū)間上最大值為.

所以,設(shè)函數(shù),求導(dǎo)當(dāng)從而單調(diào)遞減.,所以.的取值范圍是.

,在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,所以區(qū)間上最小值為,故所以區(qū)間上最大值為.

所以,而,所以.的取值范圍是.

綜上得的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點(diǎn)為F,短軸的兩個端點(diǎn)分別為AB,且,為等邊三角形.

1)求橢圓C的方程;

2)如圖,點(diǎn)M在橢圓C上且位于第一象限內(nèi),它關(guān)于坐標(biāo)原點(diǎn)O的對稱點(diǎn)為N;過點(diǎn)Mx軸的垂線,垂足為H,直線與橢圓C交于另一點(diǎn)J,若,試求以線段為直徑的圓的方程;

3)已知是過點(diǎn)A的兩條互相垂直的直線,直線與圓相交于P,Q兩點(diǎn),直線與橢圓C交于另一點(diǎn)R,求面積最大值時,直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)和函數(shù),

1)若為偶函數(shù),試判斷的奇偶性;

2)若方程有兩個不等的實(shí)根,則

①試判斷函數(shù)在區(qū)間上是否具有單調(diào)性,并說明理由;

②若方程的兩實(shí)根為求使成立的的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 是奇函數(shù).

1)求實(shí)數(shù)的值;

2)判斷函數(shù)上的單調(diào)性,并給出證明;

3)當(dāng)時,函數(shù)的值域是,求實(shí)數(shù)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第七屆世界軍人運(yùn)動會于20191018日至20191027日在中國武漢舉行,第七屆世界軍人運(yùn)動會是我國第一次承辦的綜合性國際軍事體育賽事,也是繼北京奧運(yùn)會之后我國舉辦的規(guī)模最大的國際體育盛會.來自109個國家的9300余名軍體健兒在江城武漢同場競技、增進(jìn)友誼.運(yùn)動會共設(shè)置射擊、游泳、田徑、籃球等27個大項(xiàng)、329個小項(xiàng).經(jīng)過激烈角逐,獎牌榜的前6名如下:

某大學(xué)德語系同學(xué)利用分層抽樣的方式從德國獲獎選手中抽取了9名獲獎代表.

1)請問這9名獲獎代表中獲金牌、銀牌、銅牌的人數(shù)分別是多少人?

2)從這9人中隨機(jī)抽取3人,記這3人中銀牌選手的人數(shù)為,求的分布列和期望;

3)從這9人中隨機(jī)抽取3人,求已知這3人中有獲金牌運(yùn)動員的前提下,這3人中恰好有1人為獲銅牌運(yùn)動員的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的內(nèi)切圓與三邊的切點(diǎn)分別為,已知,內(nèi)切圓圓心,設(shè)點(diǎn)A的軌跡為R.

1)求R的方程;

2)過點(diǎn)C的動直線m交曲線R于不同的兩點(diǎn)M,N,問在x軸上是否存在一定點(diǎn)QQ不與C重合),使恒成立,若求出Q點(diǎn)的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在三棱柱ABC-,平面ABC,DE,F,G分別為,AC,的中點(diǎn)AB=BC=,AC==2.

求證AC平面BEF;

求二面角B-CD-C1的余弦值;

證明直線FG與平面BCD相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足:a1=1,,記.

1)求b1,b2的值;

2)證明:數(shù)列{bn}是等比數(shù)列;

3)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)新研發(fā)了一種產(chǎn)品,產(chǎn)品的成本由原料成本及非原料成本組成.每件產(chǎn)品的非原料成本(元)與生產(chǎn)該產(chǎn)品的數(shù)量(千件)有關(guān),經(jīng)統(tǒng)計(jì)得到如下數(shù)據(jù):

根據(jù)以上數(shù)據(jù),繪制了散點(diǎn)圖.

觀察散點(diǎn)圖,兩個變量不具有線性相關(guān)關(guān)系,現(xiàn)考慮用反比例函數(shù)模型和指數(shù)函數(shù)模型分別對兩個變量的關(guān)系進(jìn)行擬合.已求得用指數(shù)函數(shù)模型擬合的回歸方程為,的相關(guān)系數(shù).參考數(shù)據(jù)(其中):

(1)用反比例函數(shù)模型求關(guān)于的回歸方程;

(2)用相關(guān)系數(shù)判斷上述兩個模型哪一個擬合效果更好(精確到0.01),并用其估計(jì)產(chǎn)量為10千件時每件產(chǎn)品的非原料成本;

(3)該企業(yè)采取訂單生產(chǎn)模式(根據(jù)訂單數(shù)量進(jìn)行生產(chǎn),即產(chǎn)品全部售出).根據(jù)市場調(diào)研數(shù)據(jù),若該產(chǎn)品單價定為100元,則簽訂9千件訂單的概率為0.8,簽訂10千件訂單的概率為0.2;若單價定為90元,則簽訂10千件訂單的概率為0.3,簽訂11千件訂單的概率為0.7.已知每件產(chǎn)品的原料成本為10元,根據(jù)(2)的結(jié)果,企業(yè)要想獲得更高利潤,產(chǎn)品單價應(yīng)選擇100元還是90元,請說明理由.

參考公式:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,相關(guān)系數(shù).

查看答案和解析>>

同步練習(xí)冊答案