【題目】已知函數(shù),e是自然對數(shù)的底,

(1)討論的單調性;

(2)若,是函數(shù)的零點,的導函數(shù),求證:

【答案】(1)當時,上單調遞減,在上單調遞增;當時,單調遞增,在上單調遞減,在上單調遞增; (2)見解析.

【解析】

1)先求導數(shù),再求導函數(shù)零點,再根據(jù)大小關系分類討論函數(shù)單調性,(2)先研究單調性,轉化所證不等式為,再根據(jù)單調性,轉化證明.最后利用不等式性質進行論證.

(1)

,

解法一:由上單調遞增,可知上單調遞增,

解法二:由可知上單調遞增,又,

所以當時,,當時,

①當時,,

時,;當時,

②當時,由或x=1,

時,,;

時,;當時,

綜上所述:當時,上單調遞減,在上單調遞增;

時,單調遞增,在上單調遞減,在上單調遞增.

(2)解法一(分析法):

時,由(1)知上的最大值為,

可知,所以上無零點.

是函數(shù)的零點,則,

,

解法一:由上單調遞增,且、,可知上單調遞增,

解法二:設,則,

,,所以

可知上單調遞增,

要證,只需證,

由(1)知上單調遞增,

只需證,又

只需證

,

,得,又,所以;

,由,

綜上所述,得證.

方法二(綜合法):

時,由(1)知上的最大值為,

可知,所以上無零點.

是函數(shù)的零點,則,

,

,,得,又,所以;

,由

所以,又,即

由(1)知上單調遞增,所以,

上單調遞增,且、,

可知上單調遞增,

所以,得證.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】動點到直線的距離比它到點的距離大1

(1)求點的軌跡的方程;

(2)過定點作直線,與(1)中的軌跡相交于兩點,為點關于原點的對稱點,證明:;

(3)在(2)中,是否存在垂直于軸的直線被以為直徑的圓截得的弦長恒為定值?若存在求出的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】北京地鐵八通線西起四惠站,東至土橋站,全長,共設13座車站目前八通線執(zhí)行20141228日制訂的計價標準,各站間計程票價單位:元如下:

四惠

3

3

3

3

4

4

4

5

5

5

5

5

四惠東

3

3

3

4

4

4

5

5

5

5

5

高碑店

3

span>3

3

4

4

4

4

5

5

5

傳媒大學

3

3

3

4

4

4

4

5

5

雙橋

3

3

3

4

4

4

4

4

管莊

3

3

3

3

4

4

4

八里橋

3

3

3

3

4

4

通州北苑

3

3

3

3

3

果園

3

3

3

3

九棵樹

3

3

3

梨園

3

3

臨河里

3

土橋

四惠

四惠東

高碑店

傳媒大學

雙橋

管莊

八里橋

通州北苑

果園

九棵樹

梨園

臨河里

土橋

113座車站中任選兩個不同的車站,求兩站間票價為5元的概率;

2在土橋出站口隨機調查了n名下車的乘客,將在八通線各站上車情況統(tǒng)計如下表:

上車站點

通州北苑果園九棵樹

梨園臨河里

雙橋管莊八里橋

四惠四惠東高碑店

傳媒大學

頻率

a

b

人數(shù)

c

15

25

a,b,cn的值,并計算這n名乘客乘車平均消費金額;

3某人從四惠站上車乘坐八通線到土橋站,中途任選一站出站一次,之后再從該站乘車若想兩次乘車花費總金額最少,可以選擇中途哪站下車?寫出一個即可

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示:在五面體ABCDEF中,四邊形EDCF是正方形,AD=DE=1,∠ADE=90°,∠ADC=∠DCB=120°.

(Ⅰ)求證:平面ABCD⊥平面EDCF;

(Ⅱ)求三棱錐A-BDF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地種植常規(guī)稻A和雜交稻B,常規(guī)稻A的畝產(chǎn)穩(wěn)定為500公斤,統(tǒng)計近年來數(shù)據(jù)得到每年常規(guī)稻A的單價比當年雜交稻B的單價高50%.統(tǒng)計雜交稻B的畝產(chǎn)數(shù)據(jù),得到畝產(chǎn)的頻率分布直方圖如下;統(tǒng)計近10年來雜交稻B的單價(單位:元/公斤)與種植畝數(shù)(單位:萬畝)的關系,得到的10組數(shù)據(jù)記為,并得到散點圖如下,參考數(shù)據(jù)見下.

(1)求出頻率分布直方圖中m的值,若各組的取值按中間值來計算,求雜交稻B的畝產(chǎn)平均值;

(2)判斷雜交稻B的單價y(單位:元/公斤)與種植畝數(shù)x(單位:萬畝)是否線性相關,若相關,試根據(jù)以下統(tǒng)計的參考數(shù)據(jù)求出y關于x的線性回歸方程;

(3)調查得到明年此地雜交稻B的種植畝數(shù)預計為2萬畝,估計明年常規(guī)稻A的單價,若在常規(guī)稻A和雜交稻B中選擇,明年種植哪種水稻收入更高?

統(tǒng)計參考數(shù)據(jù):,,,,

附:線性回歸方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知相交于點,線段是圓的一條動弦,且,則的最小值是___________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,∠C=,,M,N分別是BC,AB的中點,將△BMN沿直線MN折起,使二面角B'-MN-B的大小為,則B'N與平面ABC所成角的正切值是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線Cy22px(p0)的焦點F,直線y4y軸的交點為P,與拋物線C的交點為Q,且|QF|2|PQ|

(1)p的值;

(2)已知點T(t,-2)C上一點,M,NC上異于點T的兩點,且滿足直線TM和直線TN的斜率之和為,證明直線MN恒過定點,并求出定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】九章算術給出求羨除體積的“術”是:“并三廣,以深乘之,又以袤乘之,六而一”,其中的“廣”指羨除的三條平行側棱的長,“深”指一條側棱到另兩條側棱所在平面的距離,“袤”指這兩條側棱所在平行線之間的距離,用現(xiàn)代語言描述:在羨除中,,,兩條平行線間的距離為h,直線到平面的距離為,則該羨除的體積為已知某羨除的三視圖如圖所示,則該羨除的體積為  

A. B. C. D.

查看答案和解析>>

同步練習冊答案