【題目】某城市收集并整理了該市2017年1月份至10月份各月最低氣溫與最高氣溫(單位; )的數(shù)據(jù),繪制了下面的折線圖。

已知該市的各月最低氣溫與最高氣溫具有較好的線性關系,則根據(jù)該折線圖,下列結論錯誤的是( )
A.最低氣溫與最高氣溫為正相關
B.10月的最高氣溫不低于5月的最高氣溫
C.月溫差(最高氣溫減最低氣溫)的最大值出現(xiàn)在1月
D.最低氣溫低于 的月份有4個

【答案】D
【解析】由圖可以看出,當最低氣溫較大時,最高氣溫也較大,故A正確;10月份的最高氣溫大于20 ,而5月份的最高氣溫為不超過20 ,故B正確;從各月的溫差看,1月份的溫差最大,故C正確;而最低氣溫低于 的月份是1,2,4三月份,故D錯,所以答案是:D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex-ex(x∈R,且e為自然對數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的單調性與奇偶性;
(2)是否存在實數(shù)t , 使不等式f(xt)+f(x2t2)≥0對一切x∈R都成立?若存在,求出t;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某人到甲、乙兩市各 個小區(qū)調查空置房情況,調查得到的小區(qū)空置房的套數(shù)繪成了如圖的莖葉圖,則調查中甲市空置房套數(shù)的中位數(shù)與乙市空置房套數(shù)的中位數(shù)之差為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 為圓柱 的母線, 是底面圓 的直徑, 的中點.

(Ⅰ)問: 上是否存在點 使得 平面 ?請說明理由;
(Ⅱ)在(Ⅰ)的條件下,若 平面 ,假設這個圓柱是一個大容器,有條體積可以忽略不計的小魚能在容器的任意地方游弋,如果小魚游到四棱錐 外會有被捕的危險,求小魚被捕的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某化工廠為預測產(chǎn)品的回收率 ,需要研究它和原料有效成分含量 之間的相關關系,現(xiàn)收集了4組對照數(shù)據(jù)。

3

4

5

6

2.5

3

4

4.5

(Ⅰ)請根據(jù)相關系數(shù) 的大小判斷回收率 之間是否存在高度線性相關關系;
(Ⅱ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出 關于 的線性回歸方程 ,并預測當 時回收率 的值.
參考數(shù)據(jù):

1

0

其他

相關關系

完全相關

不相關

高度相關

低度相關

中度相關

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系 中,直線 的參數(shù)方程為 為參數(shù)),直線 的參數(shù)方程為 為參數(shù)),設 的交點為 ,當 變化時, 的軌跡為曲線 .
(1)寫出 的普遍方程及參數(shù)方程;
(2)以坐標原點為極點, 軸正半軸為極軸建立極坐標系,設曲線 的極坐標方程為 , 為曲線 上的動點,求點 的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐 中,底面 為直角梯形, ,且 平面 .

(1)求 與平面 所成角的正弦值;
(2)棱 上是否存在一點 滿足 ?若存在,求 的長;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于橢圓 ,有如下性質:若點 是橢圓上的點,則橢圓在該點處的切線方程為 .利用此結論解答下列問題.
(Ⅰ)求橢圓 的標準方程;
(Ⅱ)若動點 在直線 上,經(jīng)過點 的直線 與橢圓 相切,切點分別為 .求證直線 必經(jīng)過一定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的 值為11,則判斷框中的條件可以是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案