6.己知雙曲線E的中心在原點,F(xiàn)(5,0)是E的焦點,過F的直線l與E相交于A,B兩點,且AB中點為(9,$\frac{9}{2}$),則E的方程為(  )
A.$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1B.$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{5}$=1C.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1D.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1

分析 利用點差法求出直線AB的斜率,再根據(jù)F(5,0)是E的焦點,過F的直線l與E相交于A,B兩點,且AB的中點為(9,$\frac{9}{2}$),可建立方程組,從而可求雙曲線的方程.

解答 解:由題意,不妨設雙曲線的方程為E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),
∵F(5,0)是E的焦點,∴c=5,∴a2+b2=25.
設A(x1,y1),B(x2,y2)則有:x1+x2=18,y1+y2=9,
A,B代入相減可得AB的斜率$\frac{2^{2}}{{a}^{2}}$,
∵AB的斜率是$\frac{\frac{9}{2}-0}{9-5}$=$\frac{9}{8}$
∴$\frac{2^{2}}{{a}^{2}}$=$\frac{9}{8}$,即16b2=9a2
將16b2=9a2代入a2+b2=25,可得a2=16,b2=9,
∴雙曲線標準方程是$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{9}$=1.
故選D.

點評 本題考查雙曲線的標準方程,考查點差法解決弦的中點問題,考查學生的計算能力,解題的關(guān)鍵是利用點差法求出直線AB的斜率.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

16.不等式$|{x-2}|+\frac{1}{x-1}>x-2+\frac{1}{x-1}$的解集是{x|x<1或1<x<2}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知數(shù)列{an}滿足a1=3,an-1+an+an+1=6(n≥2),Sn=a1+a2+…+an,則S10=21.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知拋物線C:y2=4x的焦點為F,準線為1,過拋物線C上的點A作準線l的垂線,垂足為M,若△AMF與△AOF(其中O為坐標原點)的面積之比為3:1,則點A的坐標為( 。
A.(2,2$\sqrt{2}$)B.(4,4)C.(4,±4)D.(2,±2$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.對于常數(shù)m,n,“m>0,n>0”是“方程mx2-ny2=1的曲線是雙曲線”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.如圖所示,正方體ABCD-A1B1C1D1的棱長為2,線段B1D1上有兩個動點E,F(xiàn)且EF=$\frac{1}{2}$,則下列結(jié)論中正確的有(2)(3).
(1)AC⊥AE;
(2)EF∥平面ABCD;
(3)三棱錐A-BEF的體積為定值:
(4)異面直線AE,BF所成的角為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且滿足$\frac{\sqrt{3}c}{cosC}$=$\frac{a}{cos(\frac{3π}{2}+A)}$.
(I)求C的值;
(II)若$\frac{c}{a}$=2,b=4$\sqrt{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.設等比數(shù)列{an}的前n項和為Sn,3a7=a42,a2=2a1,在等差數(shù)列{bn}中,b3=a4,b15=a5
(1)求證:Sn=2an-3
(2)求數(shù)列{$\frac{4}{(n+8)_{n}}$}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知等差數(shù)列{an}中,${a_5}=\frac{π}{2}$若函數(shù)f(x)=sin2x-cosx-1,設cn=f(an),則數(shù)列{cn}的前9項和為( 。
A.0B.1C.9D.-9

查看答案和解析>>

同步練習冊答案