1.對于常數(shù)m,n,“m>0,n>0”是“方程mx2-ny2=1的曲線是雙曲線”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)充分必要條件的定義以及雙曲線的定義判斷即可.

解答 解:,若“m>0,n>0”,
則“方程mx2-ny2=1的曲線是雙曲線,是充分條件,
若“方程mx2-ny2=1的曲線是雙曲線”,
則mn>0,即m>0,n>0或m<0,n<0,不是必要條件,
故選:A.

點(diǎn)評 本題考查了充分必要條件,考查雙曲線的定義,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.“l(fā)og2x<3”是“${({\frac{1}{2}})^{x-8}}>1$”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)△ABC的內(nèi)角A、B、C所對邊的長分別為a、b、c,若a+c=2b,3sinB=5sinA,則角C=( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)α∈(-$\frac{π}{2}$,$\frac{π}{2}$),sinα=-$\frac{\sqrt{3}}{3}$,求sin2α及cos(α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知集合D={(x1,x2)|x1>0,x2>0,x1+x2=k},其中k為正常數(shù)
(1)設(shè)u=x1x2,求u的取值范圍
(2)求證:當(dāng)k≥1時,不等式($\frac{1}{{x}_{1}}$-x1)($\frac{1}{{x}_{2}}$-x2)≤($\frac{k}{2}-\frac{2}{k}$)2對任意(x1,x2)∈D恒成立
(3)求使不等式($\frac{1}{{x}_{1}}$-x1)($\frac{1}{{x}_{2}}$-x2)≥($\frac{k}{2}-\frac{2}{k}$)2對任意(x1,x2)∈D恒成立的k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.己知雙曲線E的中心在原點(diǎn),F(xiàn)(5,0)是E的焦點(diǎn),過F的直線l與E相交于A,B兩點(diǎn),且AB中點(diǎn)為(9,$\frac{9}{2}$),則E的方程為( 。
A.$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1B.$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{5}$=1C.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1D.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.己知命題p:方程$\frac{{x}^{2}}{12-m}$+$\frac{{y}^{2}}{m-4}$=1表示焦點(diǎn)在x軸上的橢圓;命題q:點(diǎn)(m,3)在圓(x-10)2+(y-1)2=13內(nèi).若p∨q為真命題,p∧q為假命題,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+${\frac{{y}^{2}}{^{2}}}^{\;}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,右頂點(diǎn)為A,上頂點(diǎn)為B,△BF1F2是邊長為2的正三角形.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程及離心率;
(Ⅱ)是否存在過點(diǎn)F2的直線l,交橢圓于兩點(diǎn)P、Q,使得PA∥QF1,如果存在,試求直線l的方程,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某市對所有高校學(xué)生進(jìn)行普通話水平測試,發(fā)現(xiàn)成績服從正態(tài)分布N(μ,σ2),下表用莖葉圖列舉出來抽樣出的10名學(xué)生的成績.
(1)計(jì)算這10名學(xué)生的成績的均值和方差;
(2))給出正態(tài)分布的數(shù)據(jù):P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544.
由(1)估計(jì)從全市隨機(jī)抽取一名學(xué)生的成績在(76,97)的概率.

查看答案和解析>>

同步練習(xí)冊答案