13.已知在四棱錐S-ABCD中,底面ABCD是平行四邊形,若SB⊥AC,SA=SC.
(1)求證:平面SBD⊥平面ABCD;
(2)若AB=2,SB=3,cos∠SCB=-$\frac{1}{8}$,∠SAC=60°,求四棱錐S-ABCD的體積.

分析 (1)證明AC⊥平面SBD,即可證明平面SBD⊥平面ABCD;
(2)確定底面ABCD是菱形,求出SC,SO,BO,即可求四棱錐S-ABCD的體積.

解答 (1)證明:設(shè)AC∩BD=O,連接SO,則
∵SA=SC,∴AC⊥SO,
∵SB⊥AC,SO∩SB=S,
∴AC⊥平面SBD,
∵AC?平面ABCD,
∴平面SBD⊥平面ABCD;
(2)解:由(1)知,SO⊥平面ABCD,AC⊥BD,∴底面ABCD是菱形,
∴BC=AB=2,
∵SB=3,cos∠SCB=-$\frac{1}{8}$,
∴由余弦定理可得SC=2,
∵∠SAC=60°,
∴△SAC是等邊三角形,
∴SO=$\sqrt{3}$,
∴BO=$\sqrt{6}$,
∴VS-ABCD=$\frac{1}{3}×\frac{1}{2}×2×2\sqrt{6}×\sqrt{3}$=2$\sqrt{2}$.

點評 本題考查求四棱錐S-ABCD的體積,考查線面、面面垂直,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.F為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的右焦點,點P在雙曲線右支上,△POF(O為坐標(biāo)原點)是面積為$\sqrt{3}$的等邊三角形,則雙曲線的離心率為(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=aln(1+x)-aln(1-x)-x-$\frac{x^3}{{3(1-{x^2})}}$.
(1)當(dāng)0<x<1時,f(x)<0,求實數(shù)a的取值范圍;
(2)證明:$\frac{3}{2}$ln2+$\frac{5}{2}$ln$\frac{3}{2}$+…+(n+$\frac{1}{2}$)ln$\frac{n+1}{n}$<n+$\frac{1}{12}$•$\frac{n}{(n+1)}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x2-4|x|+3.
(1)試證明函數(shù)f(x)是偶函數(shù);
(2)畫出f(x)的圖象;(要求先用鉛筆畫出草圖,再用中性筆描。
(3)請根據(jù)圖象指出函數(shù)f(x)的單調(diào)遞增區(qū)間與單調(diào)遞減區(qū)間;(不必證明)
(4)當(dāng)實數(shù)k取不同的值時,討論關(guān)于x的方程x2-4|x|+3=k的實根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,F(xiàn)是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦點,橢圓的離心率為$\frac{1}{2}$.A,B為橢圓的左頂點和上頂點,點C在x軸上,BC⊥BF,△BCF的外接圓M恰好與直線l1:x+$\sqrt{3}$y+3=0相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點C的直線l2與已知橢圓交于P,Q兩點,且$\overrightarrow{FP}•\overrightarrow{FQ}$=4,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.計算:$\frac{\sqrt{1+cos20°}}{2\sqrt{2}sin10°}$-sin10°($\frac{1}{tan5°}$-tan5°)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知在面積為3的△ABC所在的平面內(nèi)有一點O滿足丨$\overrightarrow{OB}$丨=2,且$\overrightarrow{OA}$-$\overrightarrow{OB}$+3$\overrightarrow{OC}$=0,若△OAB與△OBC的面積分別為S1,S2,則$\overrightarrow{OB}$•(S1$\overrightarrow{BC}$+S2$\overrightarrow{BA}$)=-12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)函數(shù)f1(x)=x2,f2(x)=2(x-x2),ai=$\frac{i}{99}$,i=0,1,2,…,99,記Sk=|fk(a1)-fk(a0)|+|fk(a2)-fk(a1)|+…+|fk(a99)-fk(a98)|,k=1,2,則下列結(jié)論正確的是( 。
A.S1=1<S2B.S1=1>S2C.S1>1>S2D.S1<1<S2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知中心在原點,焦點在坐標(biāo)軸上的橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點P($\sqrt{3}$,$\frac{\sqrt{3}}{2}$),離心率為$\frac{1}{2}$,
(1)求橢圓E的方程;
(2)設(shè)直線l過橢圓E的右焦點F,且交橢圓E于A、B兩點,是否存在實數(shù)λ,使得|AF|+|BF|=λ|AF|•|BF|恒成立?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案