已知向量
a
=(1,m),
b
=(cosx,sinx),函數(shù)f(x)=
a
b
-2.
(1)設(shè)m=1,x為某三角形的內(nèi)角,求f(x)=-1時(shí)x的值;
(2)設(shè)m=
3
,當(dāng)函數(shù)f(x)取最大值時(shí),求cos2x的值.
考點(diǎn):平面向量數(shù)量積的運(yùn)算,三角函數(shù)中的恒等變換應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用兩個(gè)向量的數(shù)量積公式求得當(dāng)m=1時(shí),f(x)的解析式,再由f(x)=-1時(shí),求得sin(x+
π
4
)=
2
2
,結(jié)合x為三角形的內(nèi)角,求得x的值.
(2)當(dāng)m=
3
時(shí),f(x)=2sin(x+
π
6
)-2,根據(jù)函數(shù)f(x)取得最大值為0,可得此時(shí)x+
π
6
=2kπ+
π
2
,k∈z,求得x的值,從而求得cos2x的值.
解答: 解:(1)由題可知,函數(shù)f(x)=
a
b
-2=msinx+cosx-2,
當(dāng)m=1時(shí),f(x)=sinx+cosx-2=
2
sin(x+
π
4
)-2,
∴當(dāng)f(x)=-1時(shí),sin(x+
π
4
)=
2
2

∵x為三角形的內(nèi)角,
∴x+
π
4
=
4
,
∴x=
π
2

(2)當(dāng)m=
3
時(shí),f(x)=
3
sinx+cosx-2=2sin(x+
π
6
)-2,
當(dāng)且僅當(dāng) sin(x+
π
6
)=1時(shí),函數(shù)f(x)取得最大值為0.
此時(shí),x+
π
6
=2kπ+
π
2
,k∈z,
∴x=2kπ+
π
3
,k∈z,
cos2x=cos[2(2kπ+
π
3
)]=cos
3
=-
1
2
點(diǎn)評(píng):本題主要考查兩個(gè)向量的數(shù)量積公式,三角函數(shù)的恒等變換,正弦函數(shù)的定義域和值域,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若某程序框圖如圖所示,則該程序運(yùn)行后輸出的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是(  )
A、28B、29C、36D、37

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)l、m是兩條不同的直線,α、β是兩個(gè)不同的平面,則下列正確的是( 。
A、若l⊥α,l⊥β,則α∥β
B、若l∥α,α⊥β,則l⊥β
C、若l∥m,m∥α,則l∥α
D、若α⊥β,α∩β=l,l⊥m,則m⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體ABCD-A1B1C1D1中,AB=2,AA1=AD=1,點(diǎn)E、F、G分別是各自所在棱的中點(diǎn).
(1)在棱A1D1所在的直線上是否存在一點(diǎn)P,使得PE與平面B1FG平行?若存在,確定點(diǎn)P的位置,并證明;否則說明理由.
(2)求點(diǎn)B1到平面EFG的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)fn(x)=
x2-2x-a
enx
,其中n∈N*,a∈R,e是自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)g(x)=f1(x)-f2(x)的零點(diǎn);
(2)若對(duì)任意n∈N*,fn(x)均有兩個(gè)極值點(diǎn),一個(gè)在區(qū)間(1,4)內(nèi),另一個(gè)在區(qū)間[1,4]外,求a的取值范圍;
(3)已知k,m∈N*,k<m,且函數(shù)fk(x)在R上是單調(diào)函數(shù),探究函數(shù)fm(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱柱ABC-A1B1C1中,側(cè)面ABBA1為矩形,AB=1,AA1=
2
,D為AA1的中點(diǎn),BD與AB1交于點(diǎn)O,CO⊥側(cè)面ABBA1
(Ⅰ)求直線BC與直線AB1所成的角;
(Ⅱ)若OC=
3
OA,求直線C1D與平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐S-ABCD的底面是正方形,側(cè)棱SA⊥底面ABCD,過A作AE垂直SB交SB于E點(diǎn),作AH垂直SD交SD于H點(diǎn),平面AEH交SC于K點(diǎn),且AB=1,SA=2.
(1)設(shè)點(diǎn)P是SA上任一點(diǎn),試求PB+PH的最小值;
(2)求證:E、H在以AK為直徑的圓上;
(3)求平面AEKH與平面ABCD所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

航天員擬在太空授課,準(zhǔn)備進(jìn)行標(biāo)號(hào)為0,1,2,3,4,5的六項(xiàng)實(shí)驗(yàn),向全世界人民普及太空知識(shí),其中0號(hào)實(shí)驗(yàn)不能放在第一項(xiàng),最后一項(xiàng)的標(biāo)號(hào)小于它前面相鄰一項(xiàng)的標(biāo)號(hào),則實(shí)驗(yàn)順序的編排方法種數(shù)為
 
(用數(shù)字作答).

查看答案和解析>>

同步練習(xí)冊(cè)答案