已知函數(shù)f(x)的定義域?yàn)镽,其導(dǎo)函數(shù)為f′(x),且f(x)+xf′(x)<0恒成立,則三個(gè)數(shù)-f(-1),f(1),3f(3)的大小關(guān)系為(  )
A、-f(-1)<f(1)<3f(3)
B、f(1)<-f(-1)<3f(3)
C、-f(-1)<3f(3)<f(1)
D、3f(3)<f(1)<-f(-1)
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,導(dǎo)數(shù)的運(yùn)算,不等關(guān)系與不等式
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:根據(jù)條件,構(gòu)造函數(shù)g(x)=xf(x),判斷函數(shù)的單調(diào)性即可得到結(jié)論.
解答: 解:構(gòu)造函數(shù)g(x)=xf(x),則g′(x)=[xf(x)]′=f(x)+xf′(x)<0,
則g(x)單調(diào)遞減,
則g(-1)>g(1)>g(3),
即3f(3)<f(1)<-f(-1),
故選:D.
點(diǎn)評(píng):本題主要考查函數(shù)值的大小比較,根據(jù)條件構(gòu)造函數(shù)g(x)=xf(x)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的方程x2-ax+a=0在(0,2)內(nèi)恰有唯一實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,AB=3,AC=2,BC=
10
,則
CA
AB
=( 。
A、
3
2
B、
2
3
C、-
2
3
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明“42n-1+3n+1(n∈N*)能被13整除”的第二步中,當(dāng)n=k+1時(shí)為了使用歸納假設(shè),對(duì)42k+1+3k+2變形正確的是( 。
A、16(42k-1+3k+1)-13×3k+1
B、4×42k+9×3k
C、(42k-1+3k+1)+15×42k-1+2×3k+1
D、3(42k-1+3k+1)-13×42k-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若三個(gè)三角形的三邊長(zhǎng)分別為:(1)4、6、8;(2)10、24、26;(3)10、12、14.則其中分別為銳角三角形、直角三角形、鈍角三角形的是( 。
A、(1)(2)(3)
B、(3)(2)(1)
C、(2)(3)(1)
D、(3)(1)(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn為等差數(shù)列{an}的前n項(xiàng)和,S1<0,3S23+2S25=0,則Sn取最小值時(shí),n的值是(  )
A、12B、13C、24D、26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二項(xiàng)式(x-
1
x
9的展開式中x3的系數(shù)是( 。
A、84B、-84
C、126D、-126

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且a,b,c成等比數(shù)列,則角B的取值范圍是(  )
A、(0,
π
6
]
B、[
π
6
,π)
C、(0,
π
3
]
D、[
π
3
,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)與g(x)是定義在R上的可導(dǎo)函數(shù),則“f′(x)=g′(x)”是“f(x)=g(x)”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案