設雙曲線與橢圓有共同的焦點,它們的交點中一個交點的縱坐標為4,求雙曲線的方程.

分析:雙曲線與橢圓有共同的焦點,可對雙曲線定位及求得c,由c2=a2+b2,因而再有一個條件即可求得方程,可求出交點,聯(lián)立方程組求a2,b2,或利用雙曲線的定義求a,

解法一:

橢圓的兩個焦點為F1(0,-3)、F2(0,3),雙曲線與橢圓的一個交點為A(,4).

設雙曲線的方程為(a>0,b>0),

由方程組

∴雙曲線的方程為

解法二:

F1(0,-3)、F2(0,3)、A(,4)的得出同解法一.

設雙曲線的方程為(a>0,b>0),則

2a=||AF1|-|AF2||

a=2,b2=c2-a2=32-22=5.

∴雙曲線的方程為

解法三:

設雙曲線的方程為                       ①

A(,4)代入①,得λ1=32,λ2=0(舍去).

∴雙曲線的方程為

綠色通道:

本題給出了三種解法,前兩種為常規(guī)方法,第三種方法是抓住與橢圓有公共的焦點這個條件來設雙曲線方程.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設雙曲線與橢圓有共同的焦點,且與橢圓的一個交點的縱坐標為,求雙曲線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:同步題 題型:解答題

設雙曲線與橢圓有共同的焦點,且與橢圓相交,一個交點的縱坐標為4,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年黑龍江省大慶35中高二(上)期中數(shù)學試卷(解析版) 題型:解答題

設雙曲線與橢圓有共同的焦點,且與橢圓相交,在第一象限的交點A的縱坐標為4,求此雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省泉州市南安市詩山中學高二(上)第三次月考數(shù)學試卷(解析版) 題型:解答題

設雙曲線與橢圓有共同的焦點,且與橢圓相交,在第一象限的交點A的縱坐標為4,求此雙曲線的方程.

查看答案和解析>>

同步練習冊答案