分析 由基本不等式可得$xy≤(\frac{x+y}{2})^{2}$,然后對(duì)已知式子進(jìn)行求解即可
解答 解:∵x>0,y>0且x+y=2
∴$xy≤(\frac{x+y}{2})^{2}$=1(當(dāng)且僅當(dāng)x=y=1時(shí)取等號(hào))
則$\frac{1}{{x}^{2}}$+$\frac{1}{{y}^{2}}$+$\frac{1}{xy}$$≥\frac{1}{{x}^{2}}+\frac{1}{{y}^{2}}+1$$≥2\sqrt{\frac{1}{{x}^{2}}•\frac{1}{{y}^{2}}}+1$=$\frac{2}{xy}+1$$≥\frac{2}{(\frac{x+y}{2})^{2}}+1$=3(當(dāng)且僅當(dāng)x=y時(shí)取等號(hào))
即$\frac{1}{{x}^{2}}$+$\frac{1}{{y}^{2}}$+$\frac{1}{xy}$的最小值3
故答案為:3
點(diǎn)評(píng) 本題主要考查基本不等式在求解最值中的應(yīng)用,解題時(shí)要注意等號(hào)成立條件的檢驗(yàn)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8+2$\sqrt{3}$ | B. | 8+8$\sqrt{3}$ | C. | 12+4$\sqrt{3}$ | D. | 16+4$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x≤0} | B. | {x|2≤x≤4} | C. | {x|0≤x<2或x>4} | D. | {x|0<x≤2或x≥4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度 | B. | 向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度 | ||
C. | 向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度 | D. | 向右平移$\frac{π}{12}$個(gè)單位長(zhǎng)度 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com