如圖,設(shè)P(x1,y1),Q(x2,y2)是拋物線C:y2=2px(p>0)上相異兩點(diǎn),且數(shù)學(xué)公式,直線QP與x軸相交于E.
(Ⅰ)若Q、P到x軸的距離的積為4,求該拋物線方程及△OPQ的面積的最小值.
(Ⅱ)在x軸上是否存在一點(diǎn)F,使直線PF與拋物線的另一交點(diǎn)為R(與點(diǎn)Q不重合),而直線RQ與x軸相交于T,且有數(shù)學(xué)公式,若存在,求出F點(diǎn)的坐標(biāo)(用p表示),若不存在,說(shuō)明理由.

解:(Ⅰ)∵,則x1x2+y1y2=0,
又P、Q在拋物線上,故y12=2px1,y22=2px2,故得,
y1y2=-4p2?|y1y2|=4p2,又|y1y2|=4,故得4p2=4,p=1.∴y2=2x,…(4分)
設(shè)E(a,0)(a≠0),直線PQ方程為x=my+a,聯(lián)立方程
消去x得y2-2pmy-2pa=0;∴y1y2=-2pa=-4p2,∴a=2p=2,∴,∴面積最小值為4.…(6分)
(Ⅱ)設(shè)E(a,0),直線PQ方程為x=my+a,聯(lián)立方程組
消去x得y2-2pmy-2pa=0;∴y1y2=-2pa①
設(shè)F(b,0),R(x3,y3),同理可知,y1y3=-2pb②
由①、②可得
,設(shè)T(c,0),則有(x3-c,y3-0)=3(x2-c,y2-0),∴y3=3y2
將④代入③,得b=3a.又由(Ⅰ)知,,y1y2=-4p2,代入①,
可得-2pa=-4p2,a=2p.故b=6p.
故知,在x軸上,存在異于E的一點(diǎn)F(6p,0),使得.…(12分)
分析:(Ⅰ)由,知x1x2+y1y2=0,由P、Q在拋物線上,得,y1y2=-4p2?|y1y2|=4p2,又|y1y2|=4,故得y2=2x,設(shè)E(a,0)(a≠0),直線PQ方程為x=my+a,聯(lián)立方程,得y2-2pmy-2pa=0.由此能導(dǎo)出該拋物線方程及△OPQ的面積的最小值.
(Ⅱ)設(shè)E(a,0),直線PQ方程為x=my+a,聯(lián)立方程組,得y2-2pmy-2pa=0,由此能導(dǎo)出在x軸上,存在異于E的一點(diǎn)F(6p,0),使得
點(diǎn)評(píng):本題主要考查直線與圓錐曲線的綜合應(yīng)用能力,具體涉及到軌跡方程的求法及直線與拋物線的相關(guān)知識(shí),解題時(shí)要注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在平面直角坐標(biāo)系xOy中,過(guò)定點(diǎn)C(p,0)作直線與拋物線y2=2px(p>0)相交于A,B兩點(diǎn),如圖,設(shè)動(dòng)點(diǎn)A(x1,y1)、B(x2,y2).
(Ⅰ)求證:y1y2為定值;
(Ⅱ)若點(diǎn)D是點(diǎn)C關(guān)于坐標(biāo)原點(diǎn)O的對(duì)稱點(diǎn),求△ADB面積的最小值;
(Ⅲ)是否存在平行于y軸的定直線l,使得l被以AC為直徑的圓截得的弦長(zhǎng)恒為定值?若存在,求出l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•虹口區(qū)一模)已知圓O:x2+y2=4.
(1)直線l1
3
x+y-2
3
=0
與圓O相交于A、B兩點(diǎn),求|AB|;
(2)如圖,設(shè)M(x1,y1)、P(x2,y2)是圓O上的兩個(gè)動(dòng)點(diǎn),點(diǎn)M關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為M1,點(diǎn)M關(guān)于x軸的對(duì)稱點(diǎn)為M2,如果直線PM1、PM2與y軸分別交于(0,m)和(0,n),問(wèn)m•n是否為定值?若是求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y2=2px(p>0)上有一點(diǎn)Q(2,y0)到焦點(diǎn)F的距離為
52

(Ⅰ)求p及y0的值;
(Ⅱ)如圖,設(shè)直線y=kx+b與拋物線交于兩點(diǎn)A(x1,y1),B(x2,y2),且|y1-y2|=2,過(guò)弦AB的中點(diǎn)M作垂直于y軸的直線與拋物線交于點(diǎn)D,連接AD,BD.試判斷△ABD的面積是否為定值?若是,求出定值;否則,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年山東省青島市平度一中高二(上)第二次段考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,過(guò)定點(diǎn)C(p,0)作直線與拋物線y2=2px(p>0)相交于A,B兩點(diǎn),如圖,設(shè)動(dòng)點(diǎn)A(x1,y1)、B(x2,y2).
(Ⅰ)求證:y1y2為定值;
(Ⅱ)若點(diǎn)D是點(diǎn)C關(guān)于坐標(biāo)原點(diǎn)O的對(duì)稱點(diǎn),求△ADB面積的最小值;
(Ⅲ)是否存在平行于y軸的定直線l,使得l被以AC為直徑的圓截得的弦長(zhǎng)恒為定值?若存在,求出l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年上海市虹口區(qū)高考數(shù)學(xué)一模試卷(文理合卷)(解析版) 題型:解答題

已知圓O:x2+y2=4.
(1)直線l1與圓O相交于A、B兩點(diǎn),求|AB|;
(2)如圖,設(shè)M(x1,y1)、P(x2,y2)是圓O上的兩個(gè)動(dòng)點(diǎn),點(diǎn)M關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為M1,點(diǎn)M關(guān)于x軸的對(duì)稱點(diǎn)為M2,如果直線PM1、PM2與y軸分別交于(0,m)和(0,n),問(wèn)m•n是否為定值?若是求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案