【題目】已知數(shù)列滿足則該數(shù)列的前18項(xiàng)和為

A. B. C. D.

【答案】B

【解析】分析; 由已知條件推導(dǎo)出數(shù)列{a2k-1}是首項(xiàng)為1、公差為1的等差數(shù)列,數(shù)列{a2k}是首項(xiàng)為2、公比為2的等比數(shù)列,由此能求出數(shù)列的前18項(xiàng)的和.

詳解:∵數(shù)列{an}滿足,

a3=2,

a4=(1+cos2π)a2+sin2π=2a2=4.

一般地,當(dāng)n=2k1(kN)時(shí),

=1.

∴數(shù)列{}是首項(xiàng)為1、公差為1的等差數(shù)列,

=k.

當(dāng)n=2k(kN)時(shí),

∴數(shù)列{}是首項(xiàng)為2、公比為2的等比數(shù)列,

=2k.

∴數(shù)列的前18項(xiàng)的和為1+2+2+4+3+8+4+16+5+32+6+64+7+128+8+256+9+512=1067.

故選B

點(diǎn)晴:本題給出數(shù)列的隔項(xiàng)遞推關(guān)系式,我們需要對(duì)n取值為奇偶進(jìn)行分析,然后找出關(guān)系進(jìn)行解決問題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次趣味校園運(yùn)動(dòng)會(huì)的頒獎(jiǎng)儀式上,高一、高二、高三代表隊(duì)人數(shù)分別為120人、120人、n人.為了活躍氣氛,大會(huì)組委會(huì)在頒獎(jiǎng)過程中穿插抽獎(jiǎng)活動(dòng),并用分層抽樣的方法從三個(gè)代表隊(duì)中共抽取20人在前排就座,其中高二代表隊(duì)有6人.

(1)求n的值;

(2)把在前排就座的高二代表隊(duì)6人分別記為a,b,c,d,e,f,現(xiàn)隨機(jī)從中抽取2人上臺(tái)抽獎(jiǎng).求a和b至少有一人上臺(tái)抽獎(jiǎng)的概率;

(3)抽獎(jiǎng)活動(dòng)的規(guī)則是:代表通過操作按鍵使電腦自動(dòng)產(chǎn)生兩個(gè)[0,1]之間的均勻隨機(jī)數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示中獎(jiǎng),則該代表中獎(jiǎng);若電腦顯示謝謝,則不中獎(jiǎng),求該代表中獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓 ,點(diǎn).

(1)求經(jīng)過點(diǎn)且與圓相切的直線的方程;

(2)過點(diǎn)的直線與圓相交于兩點(diǎn), 為線段的中點(diǎn),求線段長度的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)袋中裝有個(gè)形狀大小完全相同的小球,球的編號(hào)分別為,,,,

Ⅰ)若從袋中每次隨機(jī)抽取個(gè)球,有放回的抽取次,求取出的兩個(gè)球編號(hào)之和為的概率.

Ⅱ)若從袋中每次隨機(jī)抽取個(gè)球,有放回的抽取次,求恰有次抽到號(hào)球的概率.

Ⅲ)若一次從袋中隨機(jī)抽取個(gè)球,記球的最大編號(hào)為,求隨機(jī)變量的分布列.

Ⅳ)若從袋中每次隨機(jī)抽取個(gè)球,有放回的抽取次,記球的最大編號(hào)為,求隨機(jī)變量的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在游學(xué)活動(dòng)中,在處參觀的第組同學(xué)通知在處參觀的第組同學(xué):第組正離開處向的東南方向游玩,速度約為米/分鐘.已知的南偏西方向且相距米,第組同學(xué)立即出發(fā)沿直線行進(jìn)并用分鐘與第組同學(xué)匯合.

)設(shè)第組同學(xué)行進(jìn)的方位角為,求

(方位角:從某點(diǎn)的指北方向線起,依順時(shí)針方向到目標(biāo)方向線之間的水平夾角)

)求第組同學(xué)的行進(jìn)速度為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線軸相交于點(diǎn),點(diǎn)坐標(biāo)為,過點(diǎn)作直線的垂線,交直線于點(diǎn).記過、、三點(diǎn)的圓為圓.

(1)求圓的方程;

(2)求過點(diǎn)與圓相交所得弦長為8的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)曲線與直線有兩個(gè)相異的交點(diǎn)時(shí),實(shí)數(shù)的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)時(shí)都取得極值.(1)求的值;(2)若對(duì), 恒成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為加快新能源汽車產(chǎn)業(yè)發(fā)展,推進(jìn)節(jié)能減排,國家鼓勵(lì)消費(fèi)者購買新能源汽車.某校研究性學(xué)習(xí)小組從汽車市場上隨機(jī)選取了M輛純電動(dòng)乘用車.根據(jù)其續(xù)駛里程R(單次充電后能行駛的最大里程)作出了頻率與頻數(shù)的統(tǒng)計(jì)表:

分組

頻數(shù)

頻率

80≤R<150

10

150≤R<250

30

x

R≥250

y

z

合計(jì)

M

1

(1)求x,y,z,M的值;

(2)若用分層抽樣的方法從這M輛純電動(dòng)乘用車中抽取一個(gè)容量為6的樣本,從該樣本中任選2輛,求選到的2輛車?yán)m(xù)駛里程為150≤R<250的概率.

查看答案和解析>>

同步練習(xí)冊答案