【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù)),以原點為極點,以軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求曲線的普通方程與曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)點,分別是曲線,上兩動點且,求面積的最大值.
【答案】(Ⅰ),;(Ⅱ)6
【解析】
(Ⅰ)根據(jù)題意,消參化簡得曲線的普通方程,對的極坐標(biāo)方程,兩邊同乘,利用及坐標(biāo)公式化簡可得曲線的直角坐標(biāo)方程;
(Ⅱ)根據(jù)題意,設(shè)極坐標(biāo),則,分別代入極坐標(biāo)方程中,求得的值,,根據(jù)三角函數(shù)有界性,即可求解最值.
(Ⅰ)由條件知消去參數(shù)得到曲線的普通方程為.
因可化為,又,,代入得,于是曲線的直角坐標(biāo)方程為.
(Ⅱ)由條件知曲線,均關(guān)于軸對稱,而且外切于原點,
不妨設(shè),則,
因曲線的極坐標(biāo)方程為,
所以,,
于是,
所以當(dāng)時,面積的最大值為6.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計圖,下列對統(tǒng)計圖理解錯誤的是( )
A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬件
B. 2018年1~4月的業(yè)務(wù)量同比增長率均超過50%,在3月底最高
C. 從兩圖來看,2018年1~4月中的同一個月的快遞業(yè)務(wù)量與收入的同比增長率并不完全一致
D. 從1~4月來看,該省在2018年快遞業(yè)務(wù)收入同比增長率逐月增長
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知是各項都為正數(shù)的數(shù)列,其前n項和為,且.
(1)求證:為等差數(shù)列;
(2)設(shè),求的前n項和;
(3)求集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)銷某商品,根據(jù)以往資料統(tǒng)計,顧客采用的付款期數(shù)的分布列為
1 | 2 | 3 | 4 | 5 | |
P | 0.4 | 0.2 | 0.2 | 0.1 | 0.1 |
商場經(jīng)銷一件該商品,采用1期付款,其利潤為200元;分2期或3期付款,其利潤為250元;分4期或5期付款,其利潤為300元,X表示經(jīng)銷一件該商品的利潤.
(1)求事件A:“購買該商品的3位顧客中,至少有1位采用1期付款”的概率;
(2)求X的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生物研究所為研發(fā)一種新疫苗,在200只小白鼠身上進(jìn)行科研對比實驗,得到如下統(tǒng)計數(shù)據(jù):
未感染病毒 | 感染病毒 | 總計 | |
未注射疫苗 | 30 | ||
注射疫苗 | 70 | ||
總計 | 100 | 100 | 200 |
現(xiàn)從未注射疫苗的小白鼠中任取1只,取到“感染病毒”的小白鼠的概率為.
(Ⅰ)能否有的把握認(rèn)為注射此種疫苗有效?
(Ⅱ)在未注射疫苗且未感染病毒與注射疫苗且感染病毒的小白鼠中,分別抽取3只進(jìn)行病例分析,然后從這6只小白鼠中隨機抽取2只對注射疫苗情況進(jìn)行核實,求抽到的2只均是注射疫苗且感染病毒的小白鼠的概率.
附:,,
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點M(﹣2,﹣1),離心率為.過點M作傾斜角互補的兩條直線分別與橢圓C交于異于M的另外兩點P、Q.
(Ⅰ)求橢圓C的方程;
(Ⅱ)試判斷直線PQ的斜率是否為定值,證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了提高生產(chǎn)線的運行效率,工廠對生產(chǎn)線的設(shè)備進(jìn)行了技術(shù)改造.為了對比技術(shù)改造后的效果,采集了生產(chǎn)線的技術(shù)改造前后各20次連續(xù)正常運行的時間長度(單位:天)數(shù)據(jù),并繪制了如下莖葉圖:
(Ⅰ)(1)設(shè)所采集的40個連續(xù)正常運行時間的中位數(shù),并將連續(xù)正常運行時間超過和不超過的次數(shù)填入下面的列聯(lián)表:
超過 | 不超過 | |
改造前 | ||
改造后 |
試寫出,,,的值;
(2)根據(jù)(1)中的列聯(lián)表,能否有的把握認(rèn)為生產(chǎn)線技術(shù)改造前后的連續(xù)正常運行時間有差異?
附:,
0.050> | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(Ⅱ)工廠的生產(chǎn)線的運行需要進(jìn)行維護(hù).工廠對生產(chǎn)線的生產(chǎn)維護(hù)費用包括正常維護(hù)費、保障維護(hù)費兩種對生產(chǎn)線設(shè)定維護(hù)周期為天(即從開工運行到第天()進(jìn)行維護(hù).生產(chǎn)線在一個生產(chǎn)周期內(nèi)設(shè)置幾個維護(hù)周期,每個維護(hù)周期相互獨立.在一個維護(hù)周期內(nèi),若生產(chǎn)線能連續(xù)運行,則不會產(chǎn)生保障維護(hù)費;若生產(chǎn)線不能連續(xù)運行,則產(chǎn)生保障維護(hù)費.經(jīng)測算,正常維護(hù)費為0.5萬元次;保障維護(hù)費第一次為0.2萬元周期,此后每增加一次則保障維護(hù)費增加0.2萬元.現(xiàn)制定生產(chǎn)線一個生產(chǎn)周期(以120天計)內(nèi)的維護(hù)方案:,,2,3,4.以生產(chǎn)線在技術(shù)改造后一個維護(hù)周期內(nèi)能連續(xù)正常運行的頻率作為概率,求一個生產(chǎn)周期內(nèi)生產(chǎn)維護(hù)費的分布列及期望值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com