9.設(shè)隨機(jī)變量ξ~B(2,P),η=2ξ-1,若P(η≥1)=$\frac{65}{81}$,則E(ξ)=$\frac{10}{9}$.

分析 由已知得P(ξ=1)+P(ξ=2)=${C}_{2}^{1}p(1-p)+{C}_{2}^{2}{p}^{2}$=$\frac{65}{81}$,解得p,能求出Eξ.

解答 解:∵η=2ξ-1,P(η≥1)=$\frac{65}{81}$,∴P(ξ≥1)=$\frac{65}{81}$,
∵隨機(jī)變量ξ~B(2,p),
∴P(ξ=1)+P(ξ=2)=${C}_{2}^{1}p(1-p)+{C}_{2}^{2}{p}^{2}$=$\frac{65}{81}$,
解得p=$\frac{5}{9}$或p=$\frac{13}{9}$(舍),
∴E(ξ)=$\frac{10}{9}$.
故答案為:$\frac{10}{9}$.

點(diǎn)評 本題考查離散型隨機(jī)變量的數(shù)學(xué)期望的求法,解題時(shí)要認(rèn)真審題,注意二項(xiàng)分布的合理運(yùn)用,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=(2x-4a)lnx+x,a>0
(Ⅰ)求函數(shù)g(x)=xf(x)的單調(diào)區(qū)間;
(Ⅱ)若?x∈[1,+∞),不等式f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.四棱錐P-ABCD中,底面ABCD為正方形,且PA⊥平面ABCD,PA=AB,則直線PB與直線AC所成角的大小為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,平行四邊形OADB的對角線OD、AB相交于點(diǎn)C,線段BC上有一點(diǎn)M滿足BC=3BM,線段CD上有一點(diǎn)N滿足CD=3CN,設(shè)|$\overrightarrow{OA}$|=2,|$\overrightarrow{OB}$|=6,∠AOB=60°.
(1)用向量$\overrightarrow{OA}$,$\overrightarrow{OB}$表示向量$\overrightarrow{MN}$;
(2)求線段MN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,已知正三棱柱ABC-A1B1C1的各棱長均為4,E是BC的中點(diǎn),點(diǎn)F在側(cè)棱CC1上,且CC1=4CF
(Ⅰ)求證:EF⊥A1C;
(Ⅱ)求點(diǎn)C到平面AEF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.二次函數(shù)的圖象與x軸只有一個(gè)交點(diǎn),對稱軸為x=3,與y軸交于點(diǎn)(0,3),則它的解析式為y=$\frac{1}{3}$x2-2x+3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.sinx-$\frac{1}{6}$=0的解的個(gè)數(shù)為無數(shù)個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知在?ABCD中,M、N分別是DC、BC的中點(diǎn),若$\overrightarrow{AM}$=$\overrightarrow{{e}_{1}}$,$\overrightarrow{AN}$=$\overrightarrow{{e}_{2}}$,試用$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$表示$\overrightarrow{DB}$、$\overrightarrow{AO}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知隨機(jī)變量ξ分別取1、2和3,其中概率p(ξ=1)與p(ξ=3)相等,且方差Dξ=$\frac{1}{3}$,則概率p(ξ=2)的值為$\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊答案