已知多項(xiàng)式(1+x)+(1+x)2+…+(1+x)n=b0+b1x+b2x2+…+bnxn,且滿足b1+b2+…+bn=26,則正整數(shù)n的一個(gè)可能值為
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:在所給的等式中,令x=0可得b0=n.再令x=1,可得 2+22+23+…+2n=n+26,從而求得n的值.
解答: 解:由(1+x)+(1+x)2+…+(1+x)n=b0+b1x+b2x2+…+bnxn
令x=0可得b0=n.
再令x=1,可得 2+22+23+…+2n=b0+b1+b2+…+bn =n+b1+b2+…+bn =n+26,
∴n=4,
故答案為:4.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,注意根據(jù)題意,分析所給代數(shù)式的特點(diǎn),通過(guò)給二項(xiàng)式的x賦值,求展開(kāi)式的系數(shù)和,可以簡(jiǎn)便的求出答案,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a、b、c>0,求證:(b+c-a)(c+a-b)(a+b-c)≤abc.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知:拋物線y=
1
2
x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中B、C兩點(diǎn)坐標(biāo)分別為B(4,0)、C(0,-2),連結(jié)AC.

(1)求拋物線的函數(shù)關(guān)系式;
(2)判斷△ABC的形狀,并說(shuō)明理由;
(3)若△ABC內(nèi)部能否截出面積最大的矩形DEFC(頂點(diǎn)D、E、F、G在△ABC各邊上)?若能,求出在AB邊上的矩形頂點(diǎn)的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|2x+1|+|2x-1|
(Ⅰ)求不等式f(x)≤12的解集M;
(Ⅱ)當(dāng)a,b∈M時(shí),證明:3|a+b|≤|9+ab|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a,b∈R,求證:a2+2b2+1≥2b(a+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,圓O的直徑AB=6,C為圓周上一點(diǎn),BC=3,過(guò)C作圓的切線l,過(guò)A作l的垂線AD,垂足為D,則線段AE的長(zhǎng)等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)A、B、C三種不同型號(hào)的產(chǎn)品,產(chǎn)品的數(shù)量之比依次為2:3:4,現(xiàn)用分層抽樣方法抽出一個(gè)容量為n的樣本,樣本中A種型號(hào)產(chǎn)品有18件,那么此樣本的容量n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
4x-4(x≤1)
x2-4x+3(x>1)
,g(x)=log2x,則函數(shù)f(x)=g(x)的零點(diǎn)個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)幾何體圖形的三視圖如圖所示,則該幾何體體積為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案