【題目】某四棱錐的三視圖如圖所示,俯視圖是一個等腰直角三角形,則該四棱錐的表面積是(
A.2 +2 +2
B.3 +2 +3
C.2 + +2
D.3 + +3

【答案】D
【解析】解:由已知的四棱錐三視圖,可得:

該四棱錐的直觀圖如圖所示:

其底面面積為:S矩形ABCD=2× =2 ,

側面SPBC= ×2×1=1,

SPCD= ×2× = ,

SPAB= ×2×2=2,

SPAD= × × = ;

∴四棱錐的表面積為

S=2 +1+ +2+ =3+3 +

故選:D.

【考點精析】掌握由三視圖求面積、體積是解答本題的根本,需要知道求體積的關鍵是求出底面積和高;求全面積的關鍵是求出各個側面的面積.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={x|﹣1≤x+1≤6},B={x|m﹣1≤x<2m+1}.
(1)當x∈Z,求A的真子集的個數(shù)?
(2)若BA,求實數(shù)m的取值范圍?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣2)lnx﹣ax+1.
(1)若f(x)在區(qū)間(1,+∞)上單調遞增,求實數(shù)a的取值范圍;
(2)若存在唯一整數(shù)x0 , 使得f(x0)<0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在以坐標原點為極點,x軸的正半軸為極軸的極坐標中,圓C的方程為ρ=4cosθ.
(Ⅰ)求l的普通方程和C的直角坐標方程;
(Ⅱ)當φ∈(0,π)時,l與C相交于P,Q兩點,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,∠B1A1A=∠C1A1A=60°,AA1=AC=4,AB=2,P,Q分別為棱AA1 , AC的中點.
(1)在平面ABC內過點A作AM∥平面PQB1交BC于點M,并寫出作圖步驟,但不要求證明;
(2)若側面ACC1A1⊥側面ABB1A1 , 求直線A1C1與平面PQB1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐P﹣ABCD中,AD∥BC,AD=AB=DC= BC=1,E是PC的中點,面PAC⊥面ABCD.
(Ⅰ)證明:ED∥面PAB;
(Ⅱ)若PC=2,PA= ,求二面角A﹣PC﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三角形ABC中,角A、B、C的對邊分別為a,b,c,a=4bcosC,
(1)求角B 的值;
(2)若 ,求三角形ABC 的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=25x , g(x)=x+t,設h(x)=max{f(x),g(x)}.若當x∈N+時,恒有h(5)≤h(x),則實數(shù)t的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知甲,乙兩輛車去同一貨場裝貨物,貨場每次只能給一輛車裝貨物,所以若兩輛車同時到達,則需要有一車等待.已知甲、乙兩車裝貨物需要的時間都為30分鐘,倘若甲、乙兩車都在某1小時內到達該貨場,則至少有一輛車需要等待裝貨物的概率是(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案