函數(shù)f(x)=log
1
2
(2x-x2)的定義域是
 
考點:對數(shù)函數(shù)的定義域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)f(x)=log
1
2
(2x-x2)的定義域滿足2x-x2>0,由此能求出結(jié)果.
解答: 解:函數(shù)f(x)=log
1
2
(2x-x2)的定義域滿足:
2x-x2>0,即x2-2x<0,
解得0<x<2,
故答案為:(0,2).
點評:本題考查對數(shù)函數(shù)的定義域的求法,解題時要認真審題,注意對數(shù)性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

條件p:不等式log2(x-1)<1的解;條件q:不等式x2-2x-3<0的解,則p是q的
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
),則下列結(jié)論中正確的序號是
 

(1)函數(shù)y=f(x)•g(x)的最小正周期為π.
(2)函數(shù)y=f(x)•g(x)的最大值為
1
2

(3)函數(shù)y=f(x)•g(x)的圖象關(guān)于點(
π
4
,0)成中心對稱      
(4)將函數(shù)f(x)的圖象向右平移
π
2
個單位后得到函數(shù)g(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖.A1,A2,…Am-1(m≥2)將區(qū)間[0,l]m等分,直線x=0,x=1,y=0和曲線y=ex所圍成的區(qū)域為Ω1圖中m個矩形構(gòu)成的陰影區(qū)域為Ω2.在Ω1中任取一點,則該點取自Ω2的概率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當x∈(0,1)時,不等式x2<loga(x+1)恒成立,則實數(shù)a的范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin2
π
4
+x)-
3
cos2x-1,x∈R,若函數(shù)h(x)=f(x+α)的圖象關(guān)于點(-
π
3
,0)對稱,且α∈(0,π),則α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了普及環(huán)保知識,增強環(huán)保意識,某高中隨機抽取30名學(xué)生參加環(huán)保知識測試,得分(十分制)如圖所示,假設(shè)得分值的中位數(shù)為m,眾數(shù)為n,平均值為
.
x
,則這三個數(shù)的大小關(guān)系為
 
 
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={1,z(1+i)},i為虛數(shù)單位,N={3,4},若M∪N={1,2,3,4},則復(fù)數(shù)z在復(fù)平面上所對應(yīng)的點在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列有關(guān)命題的說法正確的是( 。
A、命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B、“m=1”是“直線x-my=0和直線x+my=0互相垂直”的充要條件
C、命題“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”
D、命題“已知x,y為一個三角形的兩內(nèi)角,若x=y,則sinx=siny”的逆命題為真命題

查看答案和解析>>

同步練習(xí)冊答案