【題目】隨著網(wǎng)絡(luò)的發(fā)展,網(wǎng)上購(gòu)物越來(lái)越受到人們的喜愛(ài),各大購(gòu)物網(wǎng)站為增加收入,促銷(xiāo)策略越來(lái)越多樣化,促銷(xiāo)費(fèi)用也不斷增加.下表是某購(gòu)物網(wǎng)站2017年1-8月促銷(xiāo)費(fèi)用(萬(wàn)元)和產(chǎn)品銷(xiāo)量(萬(wàn)件)的具體數(shù)據(jù).

1)根據(jù)數(shù)據(jù)可知具有線(xiàn)性相關(guān)關(guān)系請(qǐng)建立關(guān)于的回歸方程(系數(shù)精確到);

2)已知6月份該購(gòu)物網(wǎng)站為慶祝成立1周年,特制定獎(jiǎng)勵(lì)制度:以(單位:件)表示日銷(xiāo)量, 則每位員工每日獎(jiǎng)勵(lì)100元; ,則每位員工每日獎(jiǎng)勵(lì)150元; ,則每位員工每日獎(jiǎng)勵(lì)200元.現(xiàn)已知該網(wǎng)站6月份日銷(xiāo)量服從正態(tài)分布,請(qǐng)你計(jì)算某位員工當(dāng)月獎(jiǎng)勵(lì)金額總數(shù)大約多少元.(當(dāng)月獎(jiǎng)勵(lì)金額總數(shù)精確到百分位)

參考數(shù)據(jù) ,其中, 分別為第個(gè)月的促銷(xiāo)費(fèi)用和產(chǎn)品銷(xiāo)量, .

參考公式

1)對(duì)于一組數(shù)據(jù), , , ,其回歸方程的斜率和截距的最小二乘估計(jì)分別為, .

2)若隨機(jī)變量服從正態(tài)分布, .

【答案】(1) (2)

【解析】試題分析:(1)先求均值,再代入公式求以及,即得回歸方程,(2)先根據(jù)正態(tài)分布計(jì)算各區(qū)間概率,再根據(jù)概率乘以總數(shù)得頻數(shù),最后將頻數(shù)與對(duì)應(yīng)獎(jiǎng)勵(lì)相乘求和得結(jié)果.

試題解析:(1)由題可知 ,

將數(shù)據(jù)代入

所以關(guān)于的回歸方程

2)由題6月份日銷(xiāo)量服從正態(tài)分布,

日銷(xiāo)量在的概率為,

日銷(xiāo)量在的概率為,

日銷(xiāo)量的概率為,

所以每位員工當(dāng)月的獎(jiǎng)勵(lì)金額總數(shù)為

元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)點(diǎn)A(0,1)且斜率為k的直線(xiàn)l與圓C(x2)2(y3)21交于MN兩點(diǎn).

(1)k的取值范圍;

(2)12,其中O為坐標(biāo)原點(diǎn),求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓和拋物線(xiàn),圓與拋物線(xiàn)的準(zhǔn)線(xiàn)交于、兩點(diǎn),的面積為,其中的焦點(diǎn).

(1)求拋物線(xiàn)的方程;

(2)不過(guò)原點(diǎn)的動(dòng)直線(xiàn)交該拋物線(xiàn)于,兩點(diǎn),且滿(mǎn)足,設(shè)點(diǎn)為圓上任意一動(dòng)點(diǎn),求當(dāng)動(dòng)點(diǎn)到直線(xiàn)的距離最大時(shí)直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為2的正方形中,分別為的中點(diǎn),的中點(diǎn),沿將正方形折起,使重合于點(diǎn),在構(gòu)成的四面體中,下列結(jié)論錯(cuò)誤的是

A. 平面

B. 直線(xiàn)與平面所成角的正切值為

C. 四面體的內(nèi)切球表面積為

D. 異面直線(xiàn)所成角的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合M={x|x<-3,或x>5},P={x|(xa)·(x-8)≤0}.

(1)求MP={x|5<x≤8}的充要條件;

(2)求實(shí)數(shù)a的一個(gè)值,使它成為MP={x|5<x≤8}的一個(gè)充分但不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,側(cè)面的菱形, .

(1)證明:平面平面.

(2)若,直線(xiàn)與平面所成的角為,求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(2x-4)exa(x+2)2(x>0,aR,e是自然對(duì)數(shù)的底數(shù)).

(1)f(x)(0,+∞)上的單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;

(2)當(dāng)a時(shí),證明:函數(shù)f(x)有最小值,并求函數(shù)f(x)的最小值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,AB=1,AD=2,動(dòng)點(diǎn)P在以點(diǎn)C為圓心且與BD相切的圓上.若λμ,則λμ的最大值為(  )

A. 3 B. 2

C. D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左焦點(diǎn)為,右頂點(diǎn)為.

(1)求的方程;

(2)過(guò)點(diǎn)且與軸不重合的直線(xiàn)交于,兩點(diǎn),直線(xiàn),分別與直線(xiàn)交于兩點(diǎn),且以為直徑的圓過(guò)點(diǎn).

(。┣的方程;

(ⅱ)記,的面積分別為,,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案