解答:
解:(Ⅰ)函數(shù)f(x)的定義域?yàn)镽,f'(x)=a
xlna+2x-lna=2x+(a
x-1)lna.
令h(x)=f'(x)=2x+(a
x-1)lna,h′(x)=2+a
xln
2a,
當(dāng)a>0,a≠1時(shí),h'(x)>0,所以h(x)在R上是增函數(shù),
又h(0)=f′(0)=0,所以,f'(x)>0的解集為(0,+∞),f′(x)<0的解集為(-∞,0),
故函數(shù)f(x)的單調(diào)增區(qū)間為(0,+∞),單調(diào)減區(qū)間為(-∞,0);
(2)①由(1)可知m
1≠m
2,當(dāng)f(m
1)=f(m
2)時(shí),m
1,m
2比異號(hào),不妨設(shè)有m
1>0,m
2<0成,
先證明一個(gè)結(jié)論
當(dāng)a>1時(shí),對(duì)任意的x>0,有f(x)>f(-x)成立,
當(dāng)0<a<1時(shí),對(duì)任意的x>0,有f(x)>f(-x)成立,
∵f(x)>f(-x)
∴a
x+x
2-xlna>a-
x+x
x+xlna?a
x+a-
x-2xlna,
令t(x)=a
x+a-
x-2xlna,
∵t′(x)=a
xlna+a
-xlna-2lna=lna(a
x+a
-x-2)≥2
-2=0,(當(dāng)且僅當(dāng)x=0時(shí)等號(hào)成立),
又t(0)=0
當(dāng)a∈(0.,1)時(shí),t′(x)≤0,所以t (x)在(0,-∞)上單調(diào)遞減,
t(x)<t(0)=0,
此時(shí)對(duì)任意的x>0,有f(x)<f(-x)成立,
當(dāng)a∈(1,+∞),t′(x)>0,所以t (x)在(1,+∞)上單調(diào)遞增,
此時(shí)對(duì)任意的x>0,有f(x)>f(-x)成立.
當(dāng)a>1時(shí),f(m
2)=f(m
1)>f(-m
1),由于f(x)在(-∞,0)上單調(diào)遞減,所以m
2<-m
1,m
1+m
2<0.
同理0<a<1,m
1+m
2>0.
當(dāng)f(m
1)=f(m
2)時(shí),當(dāng)且僅當(dāng)a>1時(shí),有m
1+m
2<0成立.
②:?jiǎn)栴}等價(jià)于f(x)在[-1,1]的最大值與最小值之差≤e-1.
由(1)可知f(x)在[-1,0]上遞減,在[0,1]上遞增,
∴f(x)的最小值為f(0)=1,最大值等于f(-1),f(1)中較大的一個(gè),
f(-1)=
+1lna,f(1)=a+1-lna,
f(1)-f(-1)=a-
-2lna
令g(x)=x-
-2lnx,(x≥1),
則g′(x)=1+
-=
(-1)2≥0,僅在x=1時(shí)取等號(hào),
∴g(x)為增函數(shù),
∴當(dāng)a>1時(shí),g(a)=a-
-2lna>g(1)=0,
即f(1)-f(-1)>0,∴f(1)>f(-1),
于是f(x)的最大值為f(1)=a+1-lna,
故對(duì)?x
1,x
2∈[-1,1],|f(x
1)-f(x
2)|≤|f(1)-f(0)|=a-lna,∴a-lna≤e-1,
當(dāng)x≥1時(shí),
(x-lnx)′=≥0,
∴y=x-lnx在[1,+∞)單調(diào)遞增,
∴由a-lna≤e-1可得a的取值范圍是1<a≤e.