【題目】學(xué)校某研究性學(xué)習(xí)小組在對學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)y與聽課時(shí)間x(單位:分鐘)之間的關(guān)系滿足如圖所示的圖象,當(dāng)x∈(0,12]時(shí),圖象是二次函數(shù)圖象的一部分,其中頂點(diǎn)A(10,80),過點(diǎn)B(12,78);當(dāng)x∈[12,40]時(shí),圖象是線段BC,其中C(40,50).根據(jù)專家研究,當(dāng)注意力指數(shù)大于62時(shí),學(xué)習(xí)效果最佳.
(1)試求y=f(x)的函數(shù)關(guān)系式;
(2)教師在什么時(shí)段內(nèi)安排內(nèi)核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳?請說明理由.
【答案】
(1)解:當(dāng)x∈(0,12]時(shí),
設(shè)f(x)=a(x﹣10)2+80
過點(diǎn)(12,78)代入得,
則
當(dāng)x∈[12,40]時(shí),
設(shè)y=kx+b,過點(diǎn)B(12,78)、C(40,50)
得 ,即y=﹣x+90
則的函數(shù)關(guān)系式為
(2)解:由題意得, 或
得4<x≤12或12<x<28,
4<x<28
則老師就在x∈(4,28)時(shí)段內(nèi)安排核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳
【解析】(1)當(dāng)x∈(0,12]時(shí),設(shè)f(x)=a(x﹣10)2+80,把點(diǎn)(12,78)代入能求出解析式;當(dāng)x∈[12,40]時(shí),設(shè)y=kx+b,把點(diǎn)B(12,78)、C(40,50)代入能求出解析式.(2)由(1)的解析式,結(jié)合題設(shè)條件,列出不等式組,能求出老師就在什么時(shí)段內(nèi)安排核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳
【考點(diǎn)精析】通過靈活運(yùn)用函數(shù)的最值及其幾何意義,掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值;利用圖象求函數(shù)的最大(。┲担焕煤瘮(shù)單調(diào)性的判斷函數(shù)的最大(。┲导纯梢越獯鸫祟}.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且以原點(diǎn)為圓心,橢圓的焦距為直徑的圓與直線相切(為常數(shù)).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,若橢圓的左、右焦點(diǎn)分別為,過作直線與橢圓分別交于兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一條光線從點(diǎn)(﹣2,﹣3)射出,經(jīng)y軸反射后與圓(x+3)2+(y﹣2)2=1相切,則反射光線所在直線的斜率為( )
A.﹣ 或﹣
B.﹣ 或﹣
C.﹣ 或﹣
D.﹣ 或﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義域?yàn)?/span>的函數(shù),若滿足①;②當(dāng),且時(shí),都有;③當(dāng),且時(shí), ,則稱為“偏對稱函數(shù)”.現(xiàn)給出四個函數(shù):
①; ② ;
③; ④.
則其中是“偏對稱函數(shù)”的函數(shù)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知符號函數(shù)sgn(x)= ,則函數(shù)f(x)=sgn(lnx)﹣lnx的零點(diǎn)個數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海南大學(xué)某餐飲中心為了解新生的飲食習(xí)慣,在全校新生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:
喜歡甜品 | 不喜歡甜品 | 合計(jì) | |
南方學(xué)生 | 60 | 20 | 80 |
北方學(xué)生 | 10 | 10 | 20 |
合計(jì) | 70 | 30 | 100 |
(Ⅰ)根據(jù)表中數(shù)據(jù),問是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;
(Ⅱ)已知在被調(diào)查的北方學(xué)生中有5名中文系的學(xué)生,其中2名喜歡甜品,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至多有1人喜歡甜品的概率.
附:,K2=
P(K2≥k0) | 0.10 | 0.05 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2ax+2,x∈[﹣5,5].
(1)求實(shí)數(shù)a的范圍,使y=f(x)在區(qū)間[﹣5,5]上是單調(diào)函數(shù).
(2)求f(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, ).
(1)若的圖象在點(diǎn)處的切線方程為,求在區(qū)間上的最大值和最小值;
(2)若在區(qū)間上不是單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是R上的奇函數(shù),且當(dāng)x∈[0,+∞)時(shí), . (Ⅰ)求f(x)的解析式;
(Ⅱ)運(yùn)用函數(shù)單調(diào)性定義證明f(x)在定義域R上是增函數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com