分析 去絕對值號即可得出$f(x)=\left\{\begin{array}{l}{-2x}&{x≤-1}\\{2}&{-1<x<1}\\{2x}&{x≥1}\end{array}\right.$,這樣根據(jù)一次函數(shù)的單調(diào)性即可得出f(x)的增區(qū)間.
解答 解:$f(x)=|x-1|+|x+1|=\left\{\begin{array}{l}{-2x}&{x≤-1}\\{2}&{-1<x<1}\\{2x}&{x≥1}\end{array}\right.$;
∴x≥1時,f(x)=2x單調(diào)遞增;
∴f(x)的增區(qū)間為[1,+∞).
故答案為:[1,+∞).
點評 考查含絕對值函數(shù)的處理方法:去絕對值號,一次函數(shù)的單調(diào)性,以及分段函數(shù)單調(diào)性的判斷.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2)∪(0,2) | B. | (-∞,-2)∪(2,+∞) | C. | (-2,0)∪(2,+∞) | D. | (-2,0)∪(0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
職務(wù) 性別 | 擔(dān)任學(xué)生干部 | 未擔(dān)任學(xué)生干部 | 總計 |
男 | 10 | 16 | |
女 | 6 | 14 | |
總計 | 30 |
P(K2≥k0) | 0.40 | 0.25 | 0.10 | 0.010 |
k0 | 0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(0,\frac{{\sqrt{2}}}{2})$ | B. | $(\sqrt{2}-1,1)$ | C. | $[\sqrt{2}-1,1)$ | D. | $(0,\sqrt{2}-1]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 5 | C. | $\sqrt{26}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,1) | B. | [-2,1] | C. | {-2,-1,0} | D. | {-1,0} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com